Spaces:
Sleeping
Sleeping
import gym | |
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator | |
from ding.model import VAC | |
from ding.policy import PPOPolicy | |
from ding.envs import DingEnvWrapper, EvalEpisodeReturnWrapper, BaseEnvManager | |
from ding.config import compile_config | |
from ding.utils import set_pkg_seed | |
from dizoo.minigrid.config.minigrid_onppo_config import minigrid_ppo_config | |
from minigrid.wrappers import FlatObsWrapper | |
import numpy as np | |
from tensorboardX import SummaryWriter | |
import os | |
import gymnasium | |
class MinigridWrapper(gym.Wrapper): | |
def __init__(self, env): | |
super().__init__(env) | |
self._observation_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(8, ), dtype=np.float32) | |
self._action_space = gym.spaces.Discrete(9) | |
self._action_space.seed(0) # default seed | |
self.reward_range = (float('-inf'), float('inf')) | |
self.max_steps = minigrid_ppo_config.env.max_step | |
def step(self, action): | |
obs, reward, done, _, info = self.env.step(action) | |
self.cur_step += 1 | |
if self.cur_step > self.max_steps: | |
done = True | |
return obs, reward, done, info | |
def reset(self): | |
self.cur_step = 0 | |
return self.env.reset()[0] | |
def wrapped_minigrid_env(): | |
return DingEnvWrapper( | |
gymnasium.make(minigrid_ppo_config.env.env_id), | |
cfg={ | |
'env_wrapper': [ | |
lambda env: FlatObsWrapper(env), | |
lambda env: MinigridWrapper(env), | |
lambda env: EvalEpisodeReturnWrapper(env), | |
] | |
} | |
) | |
def main(cfg, seed=0, max_env_step=int(1e10), max_train_iter=int(1e10)): | |
cfg = compile_config( | |
cfg, BaseEnvManager, PPOPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, save_cfg=True | |
) | |
collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num | |
collector_env = BaseEnvManager(env_fn=[wrapped_minigrid_env for _ in range(collector_env_num)], cfg=cfg.env.manager) | |
evaluator_env = BaseEnvManager(env_fn=[wrapped_minigrid_env for _ in range(evaluator_env_num)], cfg=cfg.env.manager) | |
collector_env.seed(seed) | |
evaluator_env.seed(seed, dynamic_seed=False) | |
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) | |
model = VAC(**cfg.policy.model) | |
policy = PPOPolicy(cfg.policy, model=model) | |
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) | |
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) | |
collector = SampleSerialCollector( | |
cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name | |
) | |
evaluator = InteractionSerialEvaluator( | |
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name | |
) | |
while True: | |
if evaluator.should_eval(learner.train_iter): | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) | |
if stop: | |
break | |
new_data = collector.collect(train_iter=learner.train_iter) | |
learner.train(new_data, collector.envstep) | |
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: | |
break | |
if __name__ == '__main__': | |
main(minigrid_ppo_config) | |