Spaces:
Sleeping
Sleeping
import numpy as np | |
from gym import utils | |
from gym.envs.mujoco import mujoco_env | |
import os | |
class CoupledHalfCheetah(mujoco_env.MujocoEnv, utils.EzPickle): | |
def __init__(self, **kwargs): | |
mujoco_env.MujocoEnv.__init__( | |
self, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assets', 'coupled_half_cheetah.xml'), 5 | |
) | |
utils.EzPickle.__init__(self) | |
def step(self, action): | |
xposbefore1 = self.sim.data.qpos[0] | |
xposbefore2 = self.sim.data.qpos[len(self.sim.data.qpos) // 2] | |
self.do_simulation(action, self.frame_skip) | |
xposafter1 = self.sim.data.qpos[0] | |
xposafter2 = self.sim.data.qpos[len(self.sim.data.qpos) // 2] | |
ob = self._get_obs() | |
reward_ctrl1 = -0.1 * np.square(action[0:len(action) // 2]).sum() | |
reward_ctrl2 = -0.1 * np.square(action[len(action) // 2:]).sum() | |
reward_run1 = (xposafter1 - xposbefore1) / self.dt | |
reward_run2 = (xposafter2 - xposbefore2) / self.dt | |
reward = (reward_ctrl1 + reward_ctrl2) / 2.0 + (reward_run1 + reward_run2) / 2.0 | |
done = False | |
return ob, reward, done, dict( | |
reward_run1=reward_run1, reward_ctrl1=reward_ctrl1, reward_run2=reward_run2, reward_ctrl2=reward_ctrl2 | |
) | |
def _get_obs(self): | |
return np.concatenate([ | |
self.sim.data.qpos.flat[1:], | |
self.sim.data.qvel.flat, | |
]) | |
def reset_model(self): | |
qpos = self.init_qpos + self.np_random.uniform(low=-.1, high=.1, size=self.model.nq) | |
qvel = self.init_qvel + self.np_random.randn(self.model.nv) * .1 | |
self.set_state(qpos, qvel) | |
return self._get_obs() | |
def viewer_setup(self): | |
self.viewer.cam.distance = self.model.stat.extent * 0.5 | |
def get_env_info(self): | |
return {"episode_limit": self.episode_limit} | |