Spaces:
Sleeping
Sleeping
import itertools | |
import numpy as np | |
from copy import deepcopy | |
class Node(): | |
def __init__(self, label, qpos_ids, qvel_ids, act_ids, body_fn=None, bodies=None, extra_obs=None, tendons=None): | |
self.label = label | |
self.qpos_ids = qpos_ids | |
self.qvel_ids = qvel_ids | |
self.act_ids = act_ids | |
self.bodies = bodies | |
self.extra_obs = {} if extra_obs is None else extra_obs | |
self.body_fn = body_fn | |
self.tendons = tendons | |
pass | |
def __str__(self): | |
return self.label | |
def __repr__(self): | |
return self.label | |
class HyperEdge(): | |
def __init__(self, *edges): | |
self.edges = set(edges) | |
def __contains__(self, item): | |
return item in self.edges | |
def __str__(self): | |
return "HyperEdge({})".format(self.edges) | |
def __repr__(self): | |
return "HyperEdge({})".format(self.edges) | |
def get_joints_at_kdist( | |
agent_id, | |
agent_partitions, | |
hyperedges, | |
k=0, | |
kagents=False, | |
): | |
""" Identify all joints at distance <= k from agent agent_id | |
:param agent_id: id of agent to be considered | |
:param agent_partitions: list of joint tuples in order of agentids | |
:param edges: list of tuples (joint1, joint2) | |
:param k: kth degree | |
:param kagents: True (observe all joints of an agent if a single one is) or False (individual joint granularity) | |
:return: | |
dict with k as key, and list of joints at that distance | |
""" | |
assert not kagents, "kagents not implemented!" | |
agent_joints = agent_partitions[agent_id] | |
def _adjacent(lst, kagents=False): | |
# return all sets adjacent to any element in lst | |
ret = set([]) | |
for l in lst: | |
ret = ret.union(set(itertools.chain(*[e.edges.difference({l}) for e in hyperedges if l in e]))) | |
return ret | |
seen = set([]) | |
new = set([]) | |
k_dict = {} | |
for _k in range(k + 1): | |
if not _k: | |
new = set(agent_joints) | |
else: | |
print(hyperedges) | |
new = _adjacent(new) - seen | |
seen = seen.union(new) | |
k_dict[_k] = sorted(list(new), key=lambda x: x.label) | |
return k_dict | |
def build_obs(env, k_dict, k_categories, global_dict, global_categories, vec_len=None): | |
"""Given a k_dict from get_joints_at_kdist, extract observation vector. | |
:param k_dict: k_dict | |
:param qpos: qpos numpy array | |
:param qvel: qvel numpy array | |
:param vec_len: if None no padding, else zero-pad to vec_len | |
:return: | |
observation vector | |
""" | |
# TODO: This needs to be fixed, it was designed for half-cheetah only! | |
#if add_global_pos: | |
# obs_qpos_lst.append(global_qpos) | |
# obs_qvel_lst.append(global_qvel) | |
body_set_dict = {} | |
obs_lst = [] | |
# Add parts attributes | |
for k in sorted(list(k_dict.keys())): | |
cats = k_categories[k] | |
for _t in k_dict[k]: | |
for c in cats: | |
if c in _t.extra_obs: | |
items = _t.extra_obs[c](env).tolist() | |
obs_lst.extend(items if isinstance(items, list) else [items]) | |
else: | |
if c in ["qvel", "qpos"]: # this is a "joint position/velocity" item | |
items = getattr(env.sim.data, c)[getattr(_t, "{}_ids".format(c))] | |
obs_lst.extend(items if isinstance(items, list) else [items]) | |
elif c in ["qfrc_actuator"]: # this is a "vel position" item | |
items = getattr(env.sim.data, c)[getattr(_t, "{}_ids".format("qvel"))] | |
obs_lst.extend(items if isinstance(items, list) else [items]) | |
elif c in ["cvel", "cinert", "cfrc_ext"]: # this is a "body position" item | |
if _t.bodies is not None: | |
for b in _t.bodies: | |
if c not in body_set_dict: | |
body_set_dict[c] = set() | |
if b not in body_set_dict[c]: | |
items = getattr(env.sim.data, c)[b].tolist() | |
items = getattr(_t, "body_fn", lambda _id, x: x)(b, items) | |
obs_lst.extend(items if isinstance(items, list) else [items]) | |
body_set_dict[c].add(b) | |
# Add global attributes | |
body_set_dict = {} | |
for c in global_categories: | |
if c in ["qvel", "qpos"]: # this is a "joint position" item | |
for j in global_dict.get("joints", []): | |
items = getattr(env.sim.data, c)[getattr(j, "{}_ids".format(c))] | |
obs_lst.extend(items if isinstance(items, list) else [items]) | |
else: | |
for b in global_dict.get("bodies", []): | |
if c not in body_set_dict: | |
body_set_dict[c] = set() | |
if b not in body_set_dict[c]: | |
obs_lst.extend(getattr(env.sim.data, c)[b].tolist()) | |
body_set_dict[c].add(b) | |
if vec_len is not None: | |
pad = np.array((vec_len - len(obs_lst)) * [0]) | |
if len(pad): | |
return np.concatenate([np.array(obs_lst), pad]) | |
return np.array(obs_lst) | |
def build_actions(agent_partitions, k_dict): | |
# Composes agent actions output from networks | |
# into coherent joint action vector to be sent to the env. | |
pass | |
def get_parts_and_edges(label, partitioning): | |
if label in ["half_cheetah", "HalfCheetah-v2"]: | |
# define Mujoco graph | |
bthigh = Node("bthigh", -6, -6, 0) | |
bshin = Node("bshin", -5, -5, 1) | |
bfoot = Node("bfoot", -4, -4, 2) | |
fthigh = Node("fthigh", -3, -3, 3) | |
fshin = Node("fshin", -2, -2, 4) | |
ffoot = Node("ffoot", -1, -1, 5) | |
edges = [ | |
HyperEdge(bfoot, bshin), | |
HyperEdge(bshin, bthigh), | |
HyperEdge(bthigh, fthigh), | |
HyperEdge(fthigh, fshin), | |
HyperEdge(fshin, ffoot) | |
] | |
root_x = Node("root_x", 0, 0, -1, extra_obs={"qpos": lambda env: np.array([])}) | |
root_z = Node("root_z", 1, 1, -1) | |
root_y = Node("root_y", 2, 2, -1) | |
globals = {"joints": [root_x, root_y, root_z]} | |
if partitioning == "2x3": | |
parts = [(bfoot, bshin, bthigh), (ffoot, fshin, fthigh)] | |
elif partitioning == "6x1": | |
parts = [(bfoot, ), (bshin, ), (bthigh, ), (ffoot, ), (fshin, ), (fthigh, )] | |
else: | |
raise Exception("UNKNOWN partitioning config: {}".format(partitioning)) | |
return parts, edges, globals | |
elif label in ["Ant-v2"]: | |
# define Mujoco graph | |
torso = 1 | |
front_left_leg = 2 | |
aux_1 = 3 | |
ankle_1 = 4 | |
front_right_leg = 5 | |
aux_2 = 6 | |
ankle_2 = 7 | |
back_leg = 8 | |
aux_3 = 9 | |
ankle_3 = 10 | |
right_back_leg = 11 | |
aux_4 = 12 | |
ankle_4 = 13 | |
hip1 = Node( | |
"hip1", -8, -8, 2, bodies=[torso, front_left_leg], body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) # | |
ankle1 = Node( | |
"ankle1", | |
-7, | |
-7, | |
3, | |
bodies=[front_left_leg, aux_1, ankle_1], | |
body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) #, | |
hip2 = Node( | |
"hip2", -6, -6, 4, bodies=[torso, front_right_leg], body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) #, | |
ankle2 = Node( | |
"ankle2", | |
-5, | |
-5, | |
5, | |
bodies=[front_right_leg, aux_2, ankle_2], | |
body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) #, | |
hip3 = Node("hip3", -4, -4, 6, bodies=[torso, back_leg], body_fn=lambda _id, x: np.clip(x, -1, 1).tolist()) #, | |
ankle3 = Node( | |
"ankle3", -3, -3, 7, bodies=[back_leg, aux_3, ankle_3], body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) #, | |
hip4 = Node( | |
"hip4", -2, -2, 0, bodies=[torso, right_back_leg], body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) #, | |
ankle4 = Node( | |
"ankle4", | |
-1, | |
-1, | |
1, | |
bodies=[right_back_leg, aux_4, ankle_4], | |
body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) #, | |
edges = [ | |
HyperEdge(ankle4, hip4), | |
HyperEdge(ankle1, hip1), | |
HyperEdge(ankle2, hip2), | |
HyperEdge(ankle3, hip3), | |
HyperEdge(hip4, hip1, hip2, hip3), | |
] | |
free_joint = Node( | |
"free", | |
0, | |
0, | |
-1, | |
extra_obs={ | |
"qpos": lambda env: env.sim.data.qpos[:7], | |
"qvel": lambda env: env.sim.data.qvel[:6], | |
"cfrc_ext": lambda env: np.clip(env.sim.data.cfrc_ext[0:1], -1, 1) | |
} | |
) | |
globals = {"joints": [free_joint]} | |
if partitioning == "2x4": # neighbouring legs together | |
parts = [(hip1, ankle1, hip2, ankle2), (hip3, ankle3, hip4, ankle4)] | |
elif partitioning == "2x4d": # diagonal legs together | |
parts = [(hip1, ankle1, hip3, ankle3), (hip2, ankle2, hip4, ankle4)] | |
elif partitioning == "4x2": | |
parts = [(hip1, ankle1), (hip2, ankle2), (hip3, ankle3), (hip4, ankle4)] | |
else: | |
raise Exception("UNKNOWN partitioning config: {}".format(partitioning)) | |
return parts, edges, globals | |
elif label in ["Hopper-v2"]: | |
# define Mujoco-Graph | |
thigh_joint = Node( | |
"thigh_joint", | |
-3, | |
-3, | |
0, | |
extra_obs={"qvel": lambda env: np.clip(np.array([env.sim.data.qvel[-3]]), -10, 10)} | |
) | |
leg_joint = Node( | |
"leg_joint", -2, -2, 1, extra_obs={"qvel": lambda env: np.clip(np.array([env.sim.data.qvel[-2]]), -10, 10)} | |
) | |
foot_joint = Node( | |
"foot_joint", | |
-1, | |
-1, | |
2, | |
extra_obs={"qvel": lambda env: np.clip(np.array([env.sim.data.qvel[-1]]), -10, 10)} | |
) | |
edges = [HyperEdge(foot_joint, leg_joint), HyperEdge(leg_joint, thigh_joint)] | |
root_x = Node( | |
"root_x", | |
0, | |
0, | |
-1, | |
extra_obs={ | |
"qpos": lambda env: np.array([]), | |
"qvel": lambda env: np.clip(np.array([env.sim.data.qvel[1]]), -10, 10) | |
} | |
) | |
root_z = Node( | |
"root_z", 1, 1, -1, extra_obs={"qvel": lambda env: np.clip(np.array([env.sim.data.qvel[1]]), -10, 10)} | |
) | |
root_y = Node( | |
"root_y", 2, 2, -1, extra_obs={"qvel": lambda env: np.clip(np.array([env.sim.data.qvel[2]]), -10, 10)} | |
) | |
globals = {"joints": [root_x, root_y, root_z]} | |
if partitioning == "3x1": | |
parts = [(thigh_joint, ), (leg_joint, ), (foot_joint, )] | |
else: | |
raise Exception("UNKNOWN partitioning config: {}".format(partitioning)) | |
return parts, edges, globals | |
elif label in ["Humanoid-v2", "HumanoidStandup-v2"]: | |
# define Mujoco-Graph | |
abdomen_y = Node("abdomen_y", -16, -16, 0) # act ordering bug in env -- double check! | |
abdomen_z = Node("abdomen_z", -17, -17, 1) | |
abdomen_x = Node("abdomen_x", -15, -15, 2) | |
right_hip_x = Node("right_hip_x", -14, -14, 3) | |
right_hip_z = Node("right_hip_z", -13, -13, 4) | |
right_hip_y = Node("right_hip_y", -12, -12, 5) | |
right_knee = Node("right_knee", -11, -11, 6) | |
left_hip_x = Node("left_hip_x", -10, -10, 7) | |
left_hip_z = Node("left_hip_z", -9, -9, 8) | |
left_hip_y = Node("left_hip_y", -8, -8, 9) | |
left_knee = Node("left_knee", -7, -7, 10) | |
right_shoulder1 = Node("right_shoulder1", -6, -6, 11) | |
right_shoulder2 = Node("right_shoulder2", -5, -5, 12) | |
right_elbow = Node("right_elbow", -4, -4, 13) | |
left_shoulder1 = Node("left_shoulder1", -3, -3, 14) | |
left_shoulder2 = Node("left_shoulder2", -2, -2, 15) | |
left_elbow = Node("left_elbow", -1, -1, 16) | |
edges = [ | |
HyperEdge(abdomen_x, abdomen_y, abdomen_z), | |
HyperEdge(right_hip_x, right_hip_y, right_hip_z), | |
HyperEdge(left_hip_x, left_hip_y, left_hip_z), | |
HyperEdge(left_elbow, left_shoulder1, left_shoulder2), | |
HyperEdge(right_elbow, right_shoulder1, right_shoulder2), | |
HyperEdge(left_knee, left_hip_x, left_hip_y, left_hip_z), | |
HyperEdge(right_knee, right_hip_x, right_hip_y, right_hip_z), | |
HyperEdge(left_shoulder1, left_shoulder2, abdomen_x, abdomen_y, abdomen_z), | |
HyperEdge(right_shoulder1, right_shoulder2, abdomen_x, abdomen_y, abdomen_z), | |
HyperEdge(abdomen_x, abdomen_y, abdomen_z, left_hip_x, left_hip_y, left_hip_z), | |
HyperEdge(abdomen_x, abdomen_y, abdomen_z, right_hip_x, right_hip_y, right_hip_z), | |
] | |
globals = {} | |
if partitioning == "9|8": # 17 in total, so one action is a dummy (to be handled by pymarl) | |
# isolate upper and lower body | |
parts = [ | |
( | |
left_shoulder1, left_shoulder2, abdomen_x, abdomen_y, abdomen_z, right_shoulder1, right_shoulder2, | |
right_elbow, left_elbow | |
), (left_hip_x, left_hip_y, left_hip_z, right_hip_x, right_hip_y, right_hip_z, right_knee, left_knee) | |
] | |
# TODO: There could be tons of decompositions here | |
else: | |
raise Exception("UNKNOWN partitioning config: {}".format(partitioning)) | |
return parts, edges, globals | |
elif label in ["Reacher-v2"]: | |
# define Mujoco-Graph | |
body0 = 1 | |
body1 = 2 | |
fingertip = 3 | |
joint0 = Node( | |
"joint0", | |
-4, | |
-4, | |
0, | |
bodies=[body0, body1], | |
extra_obs={"qpos": (lambda env: np.array([np.sin(env.sim.data.qpos[-4]), | |
np.cos(env.sim.data.qpos[-4])]))} | |
) | |
joint1 = Node( | |
"joint1", | |
-3, | |
-3, | |
1, | |
bodies=[body1, fingertip], | |
extra_obs={ | |
"fingertip_dist": (lambda env: env.get_body_com("fingertip") - env.get_body_com("target")), | |
"qpos": (lambda env: np.array([np.sin(env.sim.data.qpos[-3]), | |
np.cos(env.sim.data.qpos[-3])])) | |
} | |
) | |
edges = [HyperEdge(joint0, joint1)] | |
worldbody = 0 | |
target = 4 | |
target_x = Node("target_x", -2, -2, -1, extra_obs={"qvel": (lambda env: np.array([]))}) | |
target_y = Node("target_y", -1, -1, -1, extra_obs={"qvel": (lambda env: np.array([]))}) | |
globals = {"bodies": [worldbody, target], "joints": [target_x, target_y]} | |
if partitioning == "2x1": | |
# isolate upper and lower arms | |
parts = [(joint0, ), (joint1, )] | |
# TODO: There could be tons of decompositions here | |
else: | |
raise Exception("UNKNOWN partitioning config: {}".format(partitioning)) | |
return parts, edges, globals | |
elif label in ["Swimmer-v2"]: | |
# define Mujoco-Graph | |
joint0 = Node("rot2", -2, -2, 0) # TODO: double-check ids | |
joint1 = Node("rot3", -1, -1, 1) | |
edges = [HyperEdge(joint0, joint1)] | |
globals = {} | |
if partitioning == "2x1": | |
# isolate upper and lower body | |
parts = [(joint0, ), (joint1, )] | |
# TODO: There could be tons of decompositions here | |
else: | |
raise Exception("UNKNOWN partitioning config: {}".format(partitioning)) | |
return parts, edges, globals | |
elif label in ["Walker2d-v2"]: | |
# define Mujoco-Graph | |
thigh_joint = Node("thigh_joint", -6, -6, 0) | |
leg_joint = Node("leg_joint", -5, -5, 1) | |
foot_joint = Node("foot_joint", -4, -4, 2) | |
thigh_left_joint = Node("thigh_left_joint", -3, -3, 3) | |
leg_left_joint = Node("leg_left_joint", -2, -2, 4) | |
foot_left_joint = Node("foot_left_joint", -1, -1, 5) | |
edges = [ | |
HyperEdge(foot_joint, leg_joint), | |
HyperEdge(leg_joint, thigh_joint), | |
HyperEdge(foot_left_joint, leg_left_joint), | |
HyperEdge(leg_left_joint, thigh_left_joint), | |
HyperEdge(thigh_joint, thigh_left_joint) | |
] | |
globals = {} | |
if partitioning == "2x3": | |
# isolate upper and lower body | |
parts = [(foot_joint, leg_joint, thigh_joint), ( | |
foot_left_joint, | |
leg_left_joint, | |
thigh_left_joint, | |
)] | |
# TODO: There could be tons of decompositions here | |
else: | |
raise Exception("UNKNOWN partitioning config: {}".format(partitioning)) | |
return parts, edges, globals | |
elif label in ["coupled_half_cheetah"]: | |
# define Mujoco graph | |
tendon = 0 | |
bthigh = Node( | |
"bthigh", | |
-6, | |
-6, | |
0, | |
tendons=[tendon], | |
extra_obs={ | |
"ten_J": lambda env: env.sim.data.ten_J[tendon], | |
"ten_length": lambda env: env.sim.data.ten_length, | |
"ten_velocity": lambda env: env.sim.data.ten_velocity | |
} | |
) | |
bshin = Node("bshin", -5, -5, 1) | |
bfoot = Node("bfoot", -4, -4, 2) | |
fthigh = Node("fthigh", -3, -3, 3) | |
fshin = Node("fshin", -2, -2, 4) | |
ffoot = Node("ffoot", -1, -1, 5) | |
bthigh2 = Node( | |
"bthigh2", | |
-6, | |
-6, | |
0, | |
tendons=[tendon], | |
extra_obs={ | |
"ten_J": lambda env: env.sim.data.ten_J[tendon], | |
"ten_length": lambda env: env.sim.data.ten_length, | |
"ten_velocity": lambda env: env.sim.data.ten_velocity | |
} | |
) | |
bshin2 = Node("bshin2", -5, -5, 1) | |
bfoot2 = Node("bfoot2", -4, -4, 2) | |
fthigh2 = Node("fthigh2", -3, -3, 3) | |
fshin2 = Node("fshin2", -2, -2, 4) | |
ffoot2 = Node("ffoot2", -1, -1, 5) | |
edges = [ | |
HyperEdge(bfoot, bshin), | |
HyperEdge(bshin, bthigh), | |
HyperEdge(bthigh, fthigh), | |
HyperEdge(fthigh, fshin), | |
HyperEdge(fshin, ffoot), | |
HyperEdge(bfoot2, bshin2), | |
HyperEdge(bshin2, bthigh2), | |
HyperEdge(bthigh2, fthigh2), | |
HyperEdge(fthigh2, fshin2), | |
HyperEdge(fshin2, ffoot2) | |
] | |
globals = {} | |
root_x = Node("root_x", 0, 0, -1, extra_obs={"qpos": lambda env: np.array([])}) | |
root_z = Node("root_z", 1, 1, -1) | |
root_y = Node("root_y", 2, 2, -1) | |
globals = {"joints": [root_x, root_y, root_z]} | |
if partitioning == "1p1": | |
parts = [(bfoot, bshin, bthigh, ffoot, fshin, fthigh), (bfoot2, bshin2, bthigh2, ffoot2, fshin2, fthigh2)] | |
else: | |
raise Exception("UNKNOWN partitioning config: {}".format(partitioning)) | |
return parts, edges, globals | |
elif label in ["manyagent_swimmer"]: | |
# Generate asset file | |
try: | |
n_agents = int(partitioning.split("x")[0]) | |
n_segs_per_agents = int(partitioning.split("x")[1]) | |
n_segs = n_agents * n_segs_per_agents | |
except Exception as e: | |
raise Exception("UNKNOWN partitioning config: {}".format(partitioning)) | |
# Note: Default Swimmer corresponds to n_segs = 3 | |
# define Mujoco-Graph | |
joints = [Node("rot{:d}".format(i), -n_segs + i, -n_segs + i, i) for i in range(0, n_segs)] | |
edges = [HyperEdge(joints[i], joints[i + 1]) for i in range(n_segs - 1)] | |
globals = {} | |
parts = [tuple(joints[i * n_segs_per_agents:(i + 1) * n_segs_per_agents]) for i in range(n_agents)] | |
return parts, edges, globals | |
elif label in ["manyagent_ant"]: # TODO: FIX! | |
# Generate asset file | |
try: | |
n_agents = int(partitioning.split("x")[0]) | |
n_segs_per_agents = int(partitioning.split("x")[1]) | |
n_segs = n_agents * n_segs_per_agents | |
except Exception as e: | |
raise Exception("UNKNOWN partitioning config: {}".format(partitioning)) | |
# # define Mujoco graph | |
# torso = 1 | |
# front_left_leg = 2 | |
# aux_1 = 3 | |
# ankle_1 = 4 | |
# right_back_leg = 11 | |
# aux_4 = 12 | |
# ankle_4 = 13 | |
# | |
# off = -4*(n_segs-1) | |
# hip1 = Node("hip1", -4-off, -4-off, 2, bodies=[torso, front_left_leg], body_fn=lambda _id, x:np.clip(x, -1, 1).tolist()) # | |
# ankle1 = Node("ankle1", -3-off, -3-off, 3, bodies=[front_left_leg, aux_1, ankle_1], body_fn=lambda _id, x:np.clip(x, -1, 1).tolist())#, | |
# hip4 = Node("hip4", -2-off, -2-off, 0, bodies=[torso, right_back_leg], body_fn=lambda _id, x:np.clip(x, -1, 1).tolist())#, | |
# ankle4 = Node("ankle4", -1-off, -1-off, 1, bodies=[right_back_leg, aux_4, ankle_4], body_fn=lambda _id, x:np.clip(x, -1, 1).tolist())#, | |
# | |
# edges = [HyperEdge(ankle4, hip4), | |
# HyperEdge(ankle1, hip1), | |
# HyperEdge(hip4, hip1), | |
# ] | |
edges = [] | |
joints = [] | |
for si in range(n_segs): | |
torso = 1 + si * 7 | |
front_right_leg = 2 + si * 7 | |
aux1 = 3 + si * 7 | |
ankle1 = 4 + si * 7 | |
back_leg = 5 + si * 7 | |
aux2 = 6 + si * 7 | |
ankle2 = 7 + si * 7 | |
off = -4 * (n_segs - 1 - si) | |
hip1n = Node( | |
"hip1_{:d}".format(si), | |
-4 - off, | |
-4 - off, | |
2 + 4 * si, | |
bodies=[torso, front_right_leg], | |
body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) | |
ankle1n = Node( | |
"ankle1_{:d}".format(si), | |
-3 - off, | |
-3 - off, | |
3 + 4 * si, | |
bodies=[front_right_leg, aux1, ankle1], | |
body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) | |
hip2n = Node( | |
"hip2_{:d}".format(si), | |
-2 - off, | |
-2 - off, | |
0 + 4 * si, | |
bodies=[torso, back_leg], | |
body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) | |
ankle2n = Node( | |
"ankle2_{:d}".format(si), | |
-1 - off, | |
-1 - off, | |
1 + 4 * si, | |
bodies=[back_leg, aux2, ankle2], | |
body_fn=lambda _id, x: np.clip(x, -1, 1).tolist() | |
) | |
edges += [HyperEdge(ankle1n, hip1n), HyperEdge(ankle2n, hip2n), HyperEdge(hip1n, hip2n)] | |
if si: | |
edges += [HyperEdge(hip1m, hip2m, hip1n, hip2n)] | |
hip1m = deepcopy(hip1n) | |
hip2m = deepcopy(hip2n) | |
joints.append([hip1n, ankle1n, hip2n, ankle2n]) | |
free_joint = Node( | |
"free", | |
0, | |
0, | |
-1, | |
extra_obs={ | |
"qpos": lambda env: env.sim.data.qpos[:7], | |
"qvel": lambda env: env.sim.data.qvel[:6], | |
"cfrc_ext": lambda env: np.clip(env.sim.data.cfrc_ext[0:1], -1, 1) | |
} | |
) | |
globals = {"joints": [free_joint]} | |
parts = [ | |
[x for sublist in joints[i * n_segs_per_agents:(i + 1) * n_segs_per_agents] for x in sublist] | |
for i in range(n_agents) | |
] | |
return parts, edges, globals | |