Spaces:
Sleeping
Sleeping
import os | |
from functools import partial | |
import gym | |
import numpy as np | |
from easydict import EasyDict | |
from tensorboardX import SummaryWriter | |
from ding.torch_utils import to_ndarray | |
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator | |
from ding.model import VAC | |
from ding.policy import PPOPolicy | |
from ding.envs import DingEnvWrapper, EvalEpisodeReturnWrapper, BaseEnvManager | |
from ding.config import compile_config | |
from ding.utils import set_pkg_seed | |
from dizoo.procgen.config.coinrun_ppo_config import coinrun_ppo_config | |
class CoinrunWrapper(gym.Wrapper): | |
def __init__(self, env, cfg): | |
super().__init__(env) | |
cfg = EasyDict(cfg) | |
self._cfg = cfg | |
self._observation_space = gym.spaces.Box( | |
low=np.zeros(shape=(3, 64, 64)), high=np.ones(shape=(3, 64, 64)) * 255, shape=(3, 64, 64), dtype=np.float32 | |
) | |
self._action_space = gym.spaces.Discrete(15) | |
self._reward_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(1, ), dtype=np.float32) | |
def _process_obs(self, obs): | |
obs = to_ndarray(obs) | |
obs = np.transpose(obs, (2, 0, 1)) | |
obs = obs.astype(np.float32) | |
return obs | |
def step(self, action): | |
obs, reward, done, info = self.env.step(action) | |
return self._process_obs(obs), reward, bool(done), info | |
def reset(self): | |
obs = self.env.reset() | |
return self._process_obs(obs) | |
def wrapped_procgen_env(cfg): | |
default_cfg = dict( | |
control_level=True, | |
start_level=0, | |
num_levels=0, | |
env_id='coinrun', | |
) | |
default_cfg.update(cfg) | |
default_cfg = EasyDict(default_cfg) | |
return DingEnvWrapper( | |
gym.make( | |
'procgen:procgen-' + default_cfg.env_id + '-v0', | |
start_level=default_cfg.start_level, | |
num_levels=default_cfg.num_levels | |
) if default_cfg.control_level else | |
gym.make('procgen:procgen-' + default_cfg.env_id + '-v0', start_level=0, num_levels=1), | |
cfg={ | |
'env_wrapper': [ | |
lambda env: CoinrunWrapper(env, default_cfg), | |
lambda env: EvalEpisodeReturnWrapper(env), | |
] | |
} | |
) | |
def main(cfg, seed=0, max_env_step=int(1e10), max_train_iter=int(1e10)): | |
cfg = compile_config( | |
cfg, BaseEnvManager, PPOPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, save_cfg=True | |
) | |
collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num | |
collector_env = BaseEnvManager( | |
env_fn=[partial(wrapped_procgen_env, cfg=coinrun_ppo_config.env) for _ in range(collector_env_num)], | |
cfg=cfg.env.manager | |
) | |
evaluator_env = BaseEnvManager( | |
env_fn=[partial(wrapped_procgen_env, cfg=coinrun_ppo_config.env) for _ in range(evaluator_env_num)], | |
cfg=cfg.env.manager | |
) | |
collector_env.seed(seed) | |
evaluator_env.seed(seed, dynamic_seed=False) | |
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) | |
model = VAC(**cfg.policy.model) | |
policy = PPOPolicy(cfg.policy, model=model) | |
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) | |
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) | |
collector = SampleSerialCollector( | |
cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name | |
) | |
evaluator = InteractionSerialEvaluator( | |
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name | |
) | |
while True: | |
if evaluator.should_eval(learner.train_iter): | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) | |
if stop: | |
break | |
new_data = collector.collect(train_iter=learner.train_iter) | |
learner.train(new_data, collector.envstep) | |
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: | |
break | |
if __name__ == '__main__': | |
main(coinrun_ppo_config) | |