Spaces:
Sleeping
Sleeping
from typing import Any, Union, List | |
import copy | |
import numpy as np | |
from ditk import logging | |
from ding.envs import BaseEnv, BaseEnvTimestep, BaseEnvInfo, update_shape | |
from ding.envs.common.env_element import EnvElement, EnvElementInfo | |
from ding.envs.common.common_function import affine_transform | |
from ding.torch_utils import to_ndarray, to_list | |
from ding.utils import ENV_REGISTRY | |
from .pybullet_wrappers import wrap_pybullet | |
Pybullet_INFO_DICT = { | |
# pybullet env | |
'InvertedPendulumMuJoCoEnv-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(4, ), | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(1, ), | |
value={ | |
'min': -1.0, | |
'max': 1.0, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=1, | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf") | |
}, | |
), | |
use_wrappers=None, | |
), | |
'InvertedDoublePendulumMuJoCoEnv-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(11, ), | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(1, ), | |
value={ | |
'min': -1.0, | |
'max': 1.0, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=1, | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf") | |
}, | |
), | |
use_wrappers=None, | |
), | |
'Walker2DMuJoCoEnv-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(17, ), | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(6, ), | |
value={ | |
'min': -1.0, | |
'max': 1.0, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=1, | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf") | |
}, | |
), | |
use_wrappers=None, | |
), | |
'Walker2DPyBulletEnv-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(22, ), | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(6, ), | |
value={ | |
'min': -1.0, | |
'max': 1.0, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=1, | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf") | |
}, | |
), | |
use_wrappers=None, | |
), | |
'HalfCheetahMuJoCoEnv-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(17, ), | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(6, ), | |
value={ | |
'min': -1.0, | |
'max': 1.0, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=1, | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf") | |
}, | |
), | |
use_wrappers=None, | |
), | |
'HalfCheetahPyBulletEnv-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(26, ), | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(6, ), | |
value={ | |
'min': -1.0, | |
'max': 1.0, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=1, | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf") | |
}, | |
), | |
use_wrappers=None, | |
), | |
'AntMuJoCoEnv-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(111, ), | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(8, ), | |
value={ | |
'min': -1.0, | |
'max': 1.0, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=1, | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf") | |
}, | |
), | |
use_wrappers=None, | |
), | |
'AntPyBulletEnv-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(28, ), | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(8, ), | |
value={ | |
'min': -1.0, | |
'max': 1.0, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=1, | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf") | |
}, | |
), | |
use_wrappers=None, | |
), | |
'HopperMuJoCoEnv-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(11, ), | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(3, ), | |
value={ | |
'min': -1.0, | |
'max': 1.0, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=1, | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf") | |
}, | |
), | |
use_wrappers=None, | |
), | |
'HopperPyBulletEnv-v0': BaseEnvInfo( | |
agent_num=1, | |
obs_space=EnvElementInfo( | |
shape=(15, ), | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf"), | |
'dtype': np.float32 | |
}, | |
), | |
act_space=EnvElementInfo( | |
shape=(3, ), | |
value={ | |
'min': -1.0, | |
'max': 1.0, | |
'dtype': np.float32 | |
}, | |
), | |
rew_space=EnvElementInfo( | |
shape=1, | |
value={ | |
'min': np.float64("-inf"), | |
'max': np.float64("inf") | |
}, | |
), | |
use_wrappers=None, | |
), | |
} | |
class PybulletEnv(BaseEnv): | |
""" | |
Note: | |
Due to the open source of mujoco env, DI-engine will deprecate PyBullet env. If anyone needs it, \ | |
please add a new issue and we will continue to maintain it. | |
""" | |
def __init__(self, cfg: dict) -> None: | |
logging.warning('PybulletEnv is deprecated, if anyone needs it, please add a new issue.') | |
self._cfg = cfg | |
self._use_act_scale = cfg.use_act_scale | |
self._init_flag = False | |
def reset(self) -> np.ndarray: | |
if not self._init_flag: | |
self._env = self._make_env(only_info=False) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.seed(self._seed + np_seed) | |
elif hasattr(self, '_seed'): | |
self._env.seed(self._seed) | |
obs = self._env.reset() | |
obs = to_ndarray(obs).astype('float32') | |
self._eval_episode_return = 0. | |
return obs | |
def close(self) -> None: | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: | |
action = to_ndarray(action) | |
if self._use_act_scale: | |
action_range = self.info().act_space.value | |
action = affine_transform(action, min_val=action_range['min'], max_val=action_range['max']) | |
obs, rew, done, info = self._env.step(action) | |
self._eval_episode_return += rew | |
obs = to_ndarray(obs).astype('float32') | |
rew = to_ndarray([rew]) # wrapped to be transfered to a array with shape (1,) | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
return BaseEnvTimestep(obs, rew, done, info) | |
def info(self) -> BaseEnvInfo: | |
if self._cfg.env_id in Pybullet_INFO_DICT: | |
info = copy.deepcopy(Pybullet_INFO_DICT[self._cfg.env_id]) | |
info.use_wrappers = self._make_env(only_info=True) | |
obs_shape, act_shape, rew_shape = update_shape( | |
info.obs_space.shape, info.act_space.shape, info.rew_space.shape, info.use_wrappers.split('\n') | |
) | |
info.obs_space.shape = obs_shape | |
info.act_space.shape = act_shape | |
info.rew_space.shape = rew_shape | |
return info | |
else: | |
keys = Pybullet_INFO_DICT.keys() | |
raise NotImplementedError('{} not found in Pybullet_INFO_DICT [{}]'.format(self._cfg.env_id, keys)) | |
def _make_env(self, only_info=False): | |
return wrap_pybullet( | |
self._cfg.env_id, | |
norm_obs=self._cfg.get('norm_obs', None), | |
norm_reward=self._cfg.get('norm_reward', None), | |
only_info=only_info | |
) | |
def __repr__(self) -> str: | |
return "DI-engine Pybullet Env({})".format(self._cfg.env_id) | |
def create_collector_env_cfg(cfg: dict) -> List[dict]: | |
collector_cfg = copy.deepcopy(cfg) | |
collector_env_num = collector_cfg.pop('collector_env_num', 1) | |
return [collector_cfg for _ in range(collector_env_num)] | |
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: | |
evaluator_cfg = copy.deepcopy(cfg) | |
evaluator_env_num = evaluator_cfg.pop('evaluator_env_num', 1) | |
evaluator_cfg.norm_reward.use_norm = False | |
return [evaluator_cfg for _ in range(evaluator_env_num)] | |