Spaces:
Sleeping
Sleeping
from typing import Any, List, Union, Optional | |
import time | |
import os | |
import imageio | |
import gym | |
import copy | |
import numpy as np | |
from easydict import EasyDict | |
from rocket_recycling.rocket import Rocket | |
from ding.envs import BaseEnv, BaseEnvTimestep | |
from ding.torch_utils import to_ndarray, to_list | |
from ding.utils import ENV_REGISTRY | |
from ding.envs import ObsPlusPrevActRewWrapper | |
class RocketEnv(BaseEnv): | |
def __init__(self, cfg: dict = {}) -> None: | |
self._cfg = cfg | |
self._init_flag = False | |
self._save_replay = False | |
self._observation_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(8, ), dtype=np.float32) | |
self._action_space = gym.spaces.Discrete(9) | |
self._action_space.seed(0) # default seed | |
self._reward_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(1, ), dtype=np.float32) | |
def reset(self) -> np.ndarray: | |
if not self._init_flag: | |
self._env = Rocket(task=self._cfg.task, max_steps=self._cfg.max_steps) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.seed(self._seed + np_seed) | |
self._action_space.seed(self._seed + np_seed) | |
elif hasattr(self, '_seed'): | |
self._env.seed(self._seed) | |
self._action_space.seed(self._seed) | |
self._eval_episode_return = 0 | |
obs = self._env.reset() | |
obs = to_ndarray(obs) | |
if self._save_replay: | |
self._frames = [] | |
return obs | |
def close(self) -> None: | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep: | |
if isinstance(action, np.ndarray) and action.shape == (1, ): | |
action = action.squeeze() # 0-dim array | |
obs, rew, done, info = self._env.step(action) | |
self._env.render() | |
self._eval_episode_return += rew | |
if self._save_replay: | |
self._frames.extend(self._env.render()) | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
if self._save_replay: | |
path = os.path.join(self._replay_path, '{}_episode.gif'.format(self._save_replay_count)) | |
self.display_frames_as_gif(self._frames, path) | |
self._save_replay_count += 1 | |
obs = to_ndarray(obs) | |
# wrapped to be transfered to a array with shape (1,) | |
rew = to_ndarray([rew]).astype(np.float32) | |
return BaseEnvTimestep(obs, rew, done, info) | |
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: | |
if replay_path is None: | |
replay_path = './video' | |
self._save_replay = True | |
if not os.path.exists(replay_path): | |
os.makedirs(replay_path) | |
self._replay_path = replay_path | |
self._save_replay_count = 0 | |
def random_action(self) -> np.ndarray: | |
random_action = self.action_space.sample() | |
random_action = to_ndarray([random_action], dtype=np.int64) | |
return random_action | |
def clone(self, caller: str) -> 'RocketEnv': | |
return RocketEnv(copy.deepcopy(self._cfg)) | |
def observation_space(self) -> gym.spaces.Space: | |
return self._observation_space | |
def action_space(self) -> gym.spaces.Space: | |
return self._action_space | |
def reward_space(self) -> gym.spaces.Space: | |
return self._reward_space | |
def __repr__(self) -> str: | |
return "DI-engine Rocket Env" | |
def display_frames_as_gif(frames: list, path: str) -> None: | |
imageio.mimsave(path, frames, fps=20) | |