Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
agent_num = 10 | |
collector_env_num = 16 | |
evaluator_env_num = 8 | |
main_config = dict( | |
exp_name='smac_MMM2_coma_seed0', | |
env=dict( | |
map_name='MMM2', | |
difficulty=7, | |
reward_only_positive=True, | |
mirror_opponent=False, | |
agent_num=agent_num, | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
stop_value=0.999, | |
n_evaluator_episode=32, | |
manager=dict( | |
shared_memory=False, | |
reset_timeout=6000, | |
), | |
), | |
policy=dict( | |
model=dict( | |
agent_num=agent_num, | |
obs_shape=dict( | |
agent_state=204, | |
global_state=322, | |
), | |
action_shape=18, | |
actor_hidden_size_list=[64], | |
), | |
learn=dict( | |
update_per_collect=20, | |
batch_size=32, | |
learning_rate=0.0005, | |
target_update_theta=0.001, | |
discount_factor=0.99, | |
td_lambda=0.9, | |
policy_weight=0.001, | |
value_weight=1, | |
entropy_weight=0.01, | |
), | |
collect=dict( | |
n_episode=32, | |
unroll_len=10, | |
env_num=collector_env_num, | |
), | |
eval=dict(env_num=evaluator_env_num, evaluator=dict(eval_freq=100, )), | |
other=dict( | |
eps=dict( | |
type='exp', | |
start=0.5, | |
end=0.01, | |
decay=200000, | |
), | |
replay_buffer=dict( | |
replay_buffer_size=5000, | |
max_use=10, | |
), | |
), | |
), | |
) | |
main_config = EasyDict(main_config) | |
create_config = dict( | |
env=dict( | |
type='smac', | |
import_names=['dizoo.smac.envs.smac_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='coma'), | |
collector=dict(type='episode', get_train_sample=True), | |
) | |
create_config = EasyDict(create_config) | |
if __name__ == '__main__': | |
from ding.entry import serial_pipeline | |
serial_pipeline((main_config, create_config), seed=0) | |