Spaces:
Sleeping
Sleeping
import os | |
from typing import Optional | |
from typing import Tuple | |
import numpy as np | |
import torch | |
from tensorboardX import SummaryWriter | |
from ding.config import compile_config | |
from ding.envs import DingEnvWrapper, BaseEnvManager | |
from ding.policy import create_policy | |
from ding.utils import set_pkg_seed | |
from ding.worker import BaseLearner | |
from lzero.envs.get_wrapped_env import get_wrappered_env | |
from lzero.worker import MuZeroEvaluator | |
def eval_muzero_with_gym_env( | |
input_cfg: Tuple[dict, dict], | |
seed: int = 0, | |
model: Optional[torch.nn.Module] = None, | |
model_path: Optional[str] = None, | |
num_episodes_each_seed: int = 1, | |
print_seed_details: int = False, | |
) -> 'Policy': # noqa | |
""" | |
Overview: | |
The eval entry for MCTS+RL algorithms, including MuZero, EfficientZero, Sampled EfficientZero. | |
We create a gym environment using env_name parameter, and then convert it to the format | |
required by LightZero using LightZeroEnvWrapper class. | |
Please refer to the get_wrappered_env method for more details. | |
Arguments: | |
- input_cfg (:obj:`Tuple[dict, dict]`): Config in dict type. | |
``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
- seed (:obj:`int`): Random seed. | |
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
- model_path (:obj:`Optional[str]`): The pretrained model path, which should | |
point to the ckpt file of the pretrained model, and an absolute path is recommended. | |
In LightZero, the path is usually something like ``exp_name/ckpt/ckpt_best.pth.tar``. | |
Returns: | |
- policy (:obj:`Policy`): Converged policy. | |
""" | |
cfg, create_cfg = input_cfg | |
assert create_cfg.policy.type in ['efficientzero', 'muzero', 'sampled_efficientzero'], \ | |
"LightZero noow only support the following algo.: 'efficientzero', 'muzero', 'sampled_efficientzero'" | |
if cfg.policy.cuda and torch.cuda.is_available(): | |
cfg.policy.device = 'cuda' | |
else: | |
cfg.policy.device = 'cpu' | |
cfg = compile_config(cfg, seed=seed, env=None, auto=True, create_cfg=create_cfg, save_cfg=True) | |
# Create main components: env, policy | |
collector_env_cfg = DingEnvWrapper.create_collector_env_cfg(cfg.env) | |
evaluator_env_cfg = DingEnvWrapper.create_evaluator_env_cfg(cfg.env) | |
collector_env = BaseEnvManager( | |
[get_wrappered_env(c, cfg.env.env_name) for c in collector_env_cfg], cfg=BaseEnvManager.default_config() | |
) | |
evaluator_env = BaseEnvManager( | |
[get_wrappered_env(c, cfg.env.env_name) for c in evaluator_env_cfg], cfg=BaseEnvManager.default_config() | |
) | |
collector_env.seed(cfg.seed) | |
evaluator_env.seed(cfg.seed, dynamic_seed=False) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval']) | |
# load pretrained model | |
if model_path is not None: | |
policy.learn_mode.load_state_dict(torch.load(model_path, map_location=cfg.policy.device)) | |
# Create worker components: learner, collector, evaluator, replay buffer, commander. | |
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) | |
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) | |
# ============================================================== | |
# MCTS+RL algorithms related core code | |
# ============================================================== | |
policy_config = cfg.policy | |
# specific game buffer for MCTS+RL algorithms | |
evaluator = MuZeroEvaluator( | |
eval_freq=cfg.policy.eval_freq, | |
n_evaluator_episode=cfg.env.n_evaluator_episode, | |
stop_value=cfg.env.stop_value, | |
env=evaluator_env, | |
policy=policy.eval_mode, | |
tb_logger=tb_logger, | |
exp_name=cfg.exp_name, | |
policy_config=policy_config | |
) | |
# ========== | |
# Main loop | |
# ========== | |
# Learner's before_run hook. | |
learner.call_hook('before_run') | |
while True: | |
# ============================================================== | |
# eval trained model | |
# ============================================================== | |
returns = [] | |
for i in range(num_episodes_each_seed): | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter) | |
returns.append(reward) | |
returns = np.array(returns) | |
if print_seed_details: | |
print("=" * 20) | |
print(f'In seed {seed}, returns: {returns}') | |
if cfg.policy.env_type == 'board_games': | |
print( | |
f'win rate: {len(np.where(returns == 1.)[0]) / num_episodes_each_seed}, draw rate: {len(np.where(returns == 0.)[0]) / num_episodes_each_seed}, lose rate: {len(np.where(returns == -1.)[0]) / num_episodes_each_seed}' | |
) | |
print("=" * 20) | |
return returns.mean(), returns | |