Spaces:
Sleeping
Sleeping
import copy | |
import time | |
from abc import ABC, abstractmethod | |
from typing import Any, List, Tuple, Optional, Union, TYPE_CHECKING | |
import numpy as np | |
from ding.torch_utils.data_helper import to_list | |
from ding.utils import BUFFER_REGISTRY | |
from easydict import EasyDict | |
if TYPE_CHECKING: | |
from lzero.policy import MuZeroPolicy, EfficientZeroPolicy, SampledEfficientZeroPolicy, GumbelMuZeroPolicy | |
class GameBuffer(ABC, object): | |
""" | |
Overview: | |
The base game buffer class for MuZeroPolicy, EfficientZeroPolicy, SampledEfficientZeroPolicy, GumbelMuZeroPolicy. | |
""" | |
def default_config(cls: type) -> EasyDict: | |
cfg = EasyDict(copy.deepcopy(cls.config)) | |
cfg.cfg_type = cls.__name__ + 'Dict' | |
return cfg | |
# Default configuration for GameBuffer. | |
config = dict( | |
# (int) The size/capacity of the replay buffer in terms of transitions. | |
replay_buffer_size=int(1e6), | |
# (float) The ratio of experiences required for the reanalyzing part in a minibatch. | |
reanalyze_ratio=0.3, | |
# (bool) Whether to consider outdated experiences for reanalyzing. If True, we first sort the data in the minibatch by the time it was produced | |
# and only reanalyze the oldest ``reanalyze_ratio`` fraction. | |
reanalyze_outdated=True, | |
# (bool) Whether to use the root value in the reanalyzing part. Please refer to EfficientZero paper for details. | |
use_root_value=False, | |
# (int) The number of samples required for mini inference. | |
mini_infer_size=256, | |
) | |
def __init__(self, cfg: dict): | |
super().__init__() | |
""" | |
Overview: | |
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key | |
in the default configuration, the user-provided value will override the default configuration. Otherwise, | |
the default configuration will be used. | |
""" | |
default_config = self.default_config() | |
default_config.update(cfg) | |
self._cfg = default_config | |
self._cfg = cfg | |
assert self._cfg.env_type in ['not_board_games', 'board_games'] | |
assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space'] | |
self.replay_buffer_size = self._cfg.replay_buffer_size | |
self.batch_size = self._cfg.batch_size | |
self._alpha = self._cfg.priority_prob_alpha | |
self._beta = self._cfg.priority_prob_beta | |
self.game_segment_buffer = [] | |
self.game_pos_priorities = [] | |
self.game_segment_game_pos_look_up = [] | |
self.keep_ratio = 1 | |
self.num_of_collected_episodes = 0 | |
self.base_idx = 0 | |
self.clear_time = 0 | |
def sample( | |
self, batch_size: int, policy: Union["MuZeroPolicy", "EfficientZeroPolicy", "SampledEfficientZeroPolicy", "GumbelMuZeroPolicy"] | |
) -> List[Any]: | |
""" | |
Overview: | |
sample data from ``GameBuffer`` and prepare the current and target batch for training. | |
Arguments: | |
- batch_size (:obj:`int`): batch size. | |
- policy (:obj:`Union["MuZeroPolicy", "EfficientZeroPolicy", "SampledEfficientZeroPolicy", "GumbelMuZeroPolicy"]`): policy. | |
Returns: | |
- train_data (:obj:`List`): List of train data, including current_batch and target_batch. | |
""" | |
def _make_batch(self, orig_data: Any, reanalyze_ratio: float) -> Tuple[Any]: | |
""" | |
Overview: | |
prepare the context of a batch | |
reward_value_context: the context of reanalyzed value targets | |
policy_re_context: the context of reanalyzed policy targets | |
policy_non_re_context: the context of non-reanalyzed policy targets | |
current_batch: the inputs of batch | |
Arguments: | |
orig_data: Any batch context from replay buffer | |
reanalyze_ratio: float ratio of reanalyzed policy (value is 100% reanalyzed) | |
Returns: | |
- context (:obj:`Tuple`): reward_value_context, policy_re_context, policy_non_re_context, current_batch | |
""" | |
pass | |
def _sample_orig_data(self, batch_size: int) -> Tuple: | |
""" | |
Overview: | |
sample orig_data that contains: | |
game_segment_list: a list of game segments | |
pos_in_game_segment_list: transition index in game (relative index) | |
batch_index_list: the index of start transition of sampled minibatch in replay buffer | |
weights_list: the weight concerning the priority | |
make_time: the time the batch is made (for correctly updating replay buffer when data is deleted) | |
Arguments: | |
- batch_size (:obj:`int`): batch size | |
- beta: float the parameter in PER for calculating the priority | |
""" | |
assert self._beta > 0 | |
num_of_transitions = self.get_num_of_transitions() | |
if self._cfg.use_priority is False: | |
self.game_pos_priorities = np.ones_like(self.game_pos_priorities) | |
# +1e-6 for numerical stability | |
probs = self.game_pos_priorities ** self._alpha + 1e-6 | |
probs /= probs.sum() | |
# sample according to transition index | |
# TODO(pu): replace=True | |
batch_index_list = np.random.choice(num_of_transitions, batch_size, p=probs, replace=False) | |
if self._cfg.reanalyze_outdated is True: | |
# NOTE: used in reanalyze part | |
batch_index_list.sort() | |
weights_list = (num_of_transitions * probs[batch_index_list]) ** (-self._beta) | |
weights_list /= weights_list.max() | |
game_segment_list = [] | |
pos_in_game_segment_list = [] | |
for idx in batch_index_list: | |
game_segment_idx, pos_in_game_segment = self.game_segment_game_pos_look_up[idx] | |
game_segment_idx -= self.base_idx | |
game_segment = self.game_segment_buffer[game_segment_idx] | |
game_segment_list.append(game_segment) | |
pos_in_game_segment_list.append(pos_in_game_segment) | |
make_time = [time.time() for _ in range(len(batch_index_list))] | |
orig_data = (game_segment_list, pos_in_game_segment_list, batch_index_list, weights_list, make_time) | |
return orig_data | |
def _preprocess_to_play_and_action_mask( | |
self, game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list | |
): | |
""" | |
Overview: | |
prepare the to_play and action_mask for the target obs in ``value_obs_list`` | |
- to_play: {list: game_segment_batch_size * (num_unroll_steps+1)} | |
- action_mask: {list: game_segment_batch_size * (num_unroll_steps+1)} | |
""" | |
to_play = [] | |
for bs in range(game_segment_batch_size): | |
to_play_tmp = list( | |
to_play_segment[bs][pos_in_game_segment_list[bs]:pos_in_game_segment_list[bs] + | |
self._cfg.num_unroll_steps + 1] | |
) | |
if len(to_play_tmp) < self._cfg.num_unroll_steps + 1: | |
# NOTE: the effective to play index is {1,2}, for null padding data, we set to_play=-1 | |
to_play_tmp += [-1 for _ in range(self._cfg.num_unroll_steps + 1 - len(to_play_tmp))] | |
to_play.append(to_play_tmp) | |
to_play = sum(to_play, []) | |
if self._cfg.model.continuous_action_space is True: | |
# when the action space of the environment is continuous, action_mask[:] is None. | |
return to_play, None | |
action_mask = [] | |
for bs in range(game_segment_batch_size): | |
action_mask_tmp = list( | |
action_mask_segment[bs][pos_in_game_segment_list[bs]:pos_in_game_segment_list[bs] + | |
self._cfg.num_unroll_steps + 1] | |
) | |
if len(action_mask_tmp) < self._cfg.num_unroll_steps + 1: | |
action_mask_tmp += [ | |
list(np.ones(self._cfg.model.action_space_size, dtype=np.int8)) | |
for _ in range(self._cfg.num_unroll_steps + 1 - len(action_mask_tmp)) | |
] | |
action_mask.append(action_mask_tmp) | |
action_mask = to_list(action_mask) | |
action_mask = sum(action_mask, []) | |
return to_play, action_mask | |
def _prepare_reward_value_context( | |
self, batch_index_list: List[str], game_segment_list: List[Any], pos_in_game_segment_list: List[Any], | |
total_transitions: int | |
) -> List[Any]: | |
""" | |
Overview: | |
prepare the context of rewards and values for calculating TD value target in reanalyzing part. | |
Arguments: | |
- batch_index_list (:obj:`list`): the index of start transition of sampled minibatch in replay buffer | |
- game_segment_list (:obj:`list`): list of game segments | |
- pos_in_game_segment_list (:obj:`list`): list of transition index in game_segment | |
- total_transitions (:obj:`int`): number of collected transitions | |
Returns: | |
- reward_value_context (:obj:`list`): value_obs_lst, value_mask, state_index_lst, rewards_lst, game_segment_lens, | |
td_steps_lst, action_mask_segment, to_play_segment | |
""" | |
pass | |
def _prepare_policy_non_reanalyzed_context( | |
self, batch_index_list: List[int], game_segment_list: List[Any], pos_in_game_segment_list: List[int] | |
) -> List[Any]: | |
""" | |
Overview: | |
prepare the context of policies for calculating policy target in non-reanalyzing part, just return the policy in self-play | |
Arguments: | |
- batch_index_list (:obj:`list`): the index of start transition of sampled minibatch in replay buffer | |
- game_segment_list (:obj:`list`): list of game segments | |
- pos_in_game_segment_list (:obj:`list`): list transition index in game | |
Returns: | |
- policy_non_re_context (:obj:`list`): state_index_lst, child_visits, game_segment_lens, action_mask_segment, to_play_segment | |
""" | |
pass | |
def _prepare_policy_reanalyzed_context( | |
self, batch_index_list: List[str], game_segment_list: List[Any], pos_in_game_segment_list: List[str] | |
) -> List[Any]: | |
""" | |
Overview: | |
prepare the context of policies for calculating policy target in reanalyzing part. | |
Arguments: | |
- batch_index_list (:obj:'list'): start transition index in the replay buffer | |
- game_segment_list (:obj:'list'): list of game segments | |
- pos_in_game_segment_list (:obj:'list'): position of transition index in one game history | |
Returns: | |
- policy_re_context (:obj:`list`): policy_obs_lst, policy_mask, state_index_lst, indices, | |
child_visits, game_segment_lens, action_mask_segment, to_play_segment | |
""" | |
pass | |
def _compute_target_reward_value(self, reward_value_context: List[Any], model: Any) -> List[np.ndarray]: | |
""" | |
Overview: | |
prepare reward and value targets from the context of rewards and values. | |
Arguments: | |
- reward_value_context (:obj:'list'): the reward value context | |
- model (:obj:'torch.tensor'):model of the target model | |
Returns: | |
- batch_value_prefixs (:obj:'np.ndarray): batch of value prefix | |
- batch_target_values (:obj:'np.ndarray): batch of value estimation | |
""" | |
pass | |
def _compute_target_policy_reanalyzed(self, policy_re_context: List[Any], model: Any) -> np.ndarray: | |
""" | |
Overview: | |
prepare policy targets from the reanalyzed context of policies | |
Arguments: | |
- policy_re_context (:obj:`List`): List of policy context to reanalyzed | |
Returns: | |
- batch_target_policies_re | |
""" | |
pass | |
def _compute_target_policy_non_reanalyzed( | |
self, policy_non_re_context: List[Any], policy_shape: Optional[int] | |
) -> np.ndarray: | |
""" | |
Overview: | |
prepare policy targets from the non-reanalyzed context of policies | |
Arguments: | |
- policy_non_re_context (:obj:`List`): List containing: | |
- pos_in_game_segment_list | |
- child_visits | |
- game_segment_lens | |
- action_mask_segment | |
- to_play_segment | |
Returns: | |
- batch_target_policies_non_re | |
""" | |
pass | |
def update_priority( | |
self, train_data: Optional[List[Optional[np.ndarray]]], batch_priorities: Optional[Any] | |
) -> None: | |
""" | |
Overview: | |
Update the priority of training data. | |
Arguments: | |
- train_data (:obj:`Optional[List[Optional[np.ndarray]]]`): training data to be updated priority. | |
- batch_priorities (:obj:`batch_priorities`): priorities to update to. | |
""" | |
pass | |
def push_game_segments(self, data_and_meta: Any) -> None: | |
""" | |
Overview: | |
Push game_segments data and it's meta information into buffer. | |
Save a game segment | |
Arguments: | |
- data_and_meta | |
- data (:obj:`Any`): The data (game segments) which will be pushed into buffer. | |
- meta (:obj:`dict`): Meta information, e.g. priority, count, staleness. | |
""" | |
data, meta = data_and_meta | |
for (data_game, meta_game) in zip(data, meta): | |
self._push_game_segment(data_game, meta_game) | |
def _push_game_segment(self, data: Any, meta: Optional[dict] = None) -> None: | |
""" | |
Overview: | |
Push data and it's meta information in buffer. | |
Save a game segment. | |
Arguments: | |
- data (:obj:`Any`): The data (a game segment) which will be pushed into buffer. | |
- meta (:obj:`dict`): Meta information, e.g. priority, count, staleness. | |
- done (:obj:`bool`): whether the game is finished. | |
- unroll_plus_td_steps (:obj:`int`): if the game is not finished, we only save the transitions that can be computed | |
- priorities (:obj:`list`): the priorities corresponding to the transitions in the game history | |
Returns: | |
- buffered_data (:obj:`BufferedData`): The pushed data. | |
""" | |
if meta['done']: | |
self.num_of_collected_episodes += 1 | |
valid_len = len(data) | |
else: | |
valid_len = len(data) - meta['unroll_plus_td_steps'] | |
if meta['priorities'] is None: | |
max_prio = self.game_pos_priorities.max() if self.game_segment_buffer else 1 | |
# if no 'priorities' provided, set the valid part of the new-added game history the max_prio | |
self.game_pos_priorities = np.concatenate( | |
( | |
self.game_pos_priorities, [max_prio | |
for _ in range(valid_len)] + [0. for _ in range(valid_len, len(data))] | |
) | |
) | |
else: | |
assert len(data) == len(meta['priorities']), " priorities should be of same length as the game steps" | |
priorities = meta['priorities'].copy().reshape(-1) | |
priorities[valid_len:len(data)] = 0. | |
self.game_pos_priorities = np.concatenate((self.game_pos_priorities, priorities)) | |
self.game_segment_buffer.append(data) | |
self.game_segment_game_pos_look_up += [ | |
(self.base_idx + len(self.game_segment_buffer) - 1, step_pos) for step_pos in range(len(data)) | |
] | |
def remove_oldest_data_to_fit(self) -> None: | |
""" | |
Overview: | |
remove some oldest data if the replay buffer is full. | |
""" | |
assert self.replay_buffer_size > self._cfg.batch_size, "replay buffer size should be larger than batch size" | |
nums_of_game_segments = self.get_num_of_game_segments() | |
total_transition = self.get_num_of_transitions() | |
if total_transition > self.replay_buffer_size: | |
index = 0 | |
for i in range(nums_of_game_segments): | |
total_transition -= len(self.game_segment_buffer[i]) | |
if total_transition <= self.replay_buffer_size * self.keep_ratio: | |
# find the max game_segment index to keep in the buffer | |
index = i | |
break | |
if total_transition >= self._cfg.batch_size: | |
self._remove(index + 1) | |
def _remove(self, excess_game_segment_index: List[int]) -> None: | |
""" | |
Overview: | |
delete game segments in index [0: excess_game_segment_index] | |
Arguments: | |
- excess_game_segment_index (:obj:`List[str]`): Index of data. | |
""" | |
excess_game_positions = sum( | |
[len(game_segment) for game_segment in self.game_segment_buffer[:excess_game_segment_index]] | |
) | |
del self.game_segment_buffer[:excess_game_segment_index] | |
self.game_pos_priorities = self.game_pos_priorities[excess_game_positions:] | |
del self.game_segment_game_pos_look_up[:excess_game_positions] | |
self.base_idx += excess_game_segment_index | |
self.clear_time = time.time() | |
def get_num_of_episodes(self) -> int: | |
# number of collected episodes | |
return self.num_of_collected_episodes | |
def get_num_of_game_segments(self) -> int: | |
# num of game segments | |
return len(self.game_segment_buffer) | |
def get_num_of_transitions(self) -> int: | |
# total number of transitions | |
return len(self.game_segment_game_pos_look_up) | |
def __repr__(self): | |
return f'current buffer statistics is: num_of_all_collected_episodes: {self.num_of_collected_episodes}, num of game segments: {len(self.game_segment_buffer)}, number of transitions: {len(self.game_segment_game_pos_look_up)}' | |