Spaces:
Sleeping
Sleeping
from typing import Any, Tuple, List | |
import numpy as np | |
from ding.utils import BUFFER_REGISTRY | |
from lzero.mcts.utils import prepare_observation | |
from .game_buffer_muzero import MuZeroGameBuffer | |
class StochasticMuZeroGameBuffer(MuZeroGameBuffer): | |
""" | |
Overview: | |
The specific game buffer for Stochastic MuZero policy. | |
""" | |
def __init__(self, cfg: dict): | |
super().__init__(cfg) | |
""" | |
Overview: | |
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key | |
in the default configuration, the user-provided value will override the default configuration. Otherwise, | |
the default configuration will be used. | |
""" | |
default_config = self.default_config() | |
default_config.update(cfg) | |
self._cfg = default_config | |
assert self._cfg.env_type in ['not_board_games', 'board_games'] | |
assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space'] | |
self.replay_buffer_size = self._cfg.replay_buffer_size | |
self.batch_size = self._cfg.batch_size | |
self._alpha = self._cfg.priority_prob_alpha | |
self._beta = self._cfg.priority_prob_beta | |
self.keep_ratio = 1 | |
self.model_update_interval = 10 | |
self.num_of_collected_episodes = 0 | |
self.base_idx = 0 | |
self.clear_time = 0 | |
self.game_segment_buffer = [] | |
self.game_pos_priorities = [] | |
self.game_segment_game_pos_look_up = [] | |
def _make_batch(self, batch_size: int, reanalyze_ratio: float) -> Tuple[Any]: | |
""" | |
Overview: | |
first sample orig_data through ``_sample_orig_data()``, | |
then prepare the context of a batch: | |
reward_value_context: the context of reanalyzed value targets | |
policy_re_context: the context of reanalyzed policy targets | |
policy_non_re_context: the context of non-reanalyzed policy targets | |
current_batch: the inputs of batch | |
Arguments: | |
- batch_size (:obj:`int`): the batch size of orig_data from replay buffer. | |
- reanalyze_ratio (:obj:`float`): ratio of reanalyzed policy (value is 100% reanalyzed) | |
Returns: | |
- context (:obj:`Tuple`): reward_value_context, policy_re_context, policy_non_re_context, current_batch | |
""" | |
# obtain the batch context from replay buffer | |
orig_data = self._sample_orig_data(batch_size) | |
game_segment_list, pos_in_game_segment_list, batch_index_list, weights_list, make_time_list = orig_data | |
batch_size = len(batch_index_list) | |
obs_list, action_list, mask_list = [], [], [] | |
if self._cfg.use_ture_chance_label_in_chance_encoder: | |
chance_list = [] | |
# prepare the inputs of a batch | |
for i in range(batch_size): | |
game = game_segment_list[i] | |
pos_in_game_segment = pos_in_game_segment_list[i] | |
actions_tmp = game.action_segment[pos_in_game_segment:pos_in_game_segment + | |
self._cfg.num_unroll_steps].tolist() | |
if self._cfg.use_ture_chance_label_in_chance_encoder: | |
chances_tmp = game.chance_segment[1 + pos_in_game_segment:1 + pos_in_game_segment + | |
self._cfg.num_unroll_steps].tolist() | |
# add mask for invalid actions (out of trajectory) | |
mask_tmp = [1. for i in range(len(actions_tmp))] | |
mask_tmp += [0. for _ in range(self._cfg.num_unroll_steps - len(mask_tmp))] | |
# pad random action | |
actions_tmp += [ | |
np.random.randint(0, game.action_space_size) | |
for _ in range(self._cfg.num_unroll_steps - len(actions_tmp)) | |
] | |
if self._cfg.use_ture_chance_label_in_chance_encoder: | |
chances_tmp += [ | |
np.random.randint(0, game.action_space_size) | |
for _ in range(self._cfg.num_unroll_steps - len(chances_tmp)) | |
] | |
# obtain the input observations | |
# pad if length of obs in game_segment is less than stack+num_unroll_steps | |
# e.g. stack+num_unroll_steps 4+5 | |
obs_list.append( | |
game_segment_list[i].get_unroll_obs( | |
pos_in_game_segment_list[i], num_unroll_steps=self._cfg.num_unroll_steps, padding=True | |
) | |
) | |
action_list.append(actions_tmp) | |
mask_list.append(mask_tmp) | |
if self._cfg.use_ture_chance_label_in_chance_encoder: | |
chance_list.append(chances_tmp) | |
# formalize the input observations | |
obs_list = prepare_observation(obs_list, self._cfg.model.model_type) | |
# formalize the inputs of a batch | |
if self._cfg.use_ture_chance_label_in_chance_encoder: | |
current_batch = [obs_list, action_list, mask_list, batch_index_list, weights_list, make_time_list, | |
chance_list] | |
else: | |
current_batch = [obs_list, action_list, mask_list, batch_index_list, weights_list, make_time_list] | |
for i in range(len(current_batch)): | |
current_batch[i] = np.asarray(current_batch[i]) | |
total_transitions = self.get_num_of_transitions() | |
# obtain the context of value targets | |
reward_value_context = self._prepare_reward_value_context( | |
batch_index_list, game_segment_list, pos_in_game_segment_list, total_transitions | |
) | |
""" | |
only reanalyze recent reanalyze_ratio (e.g. 50%) data | |
if self._cfg.reanalyze_outdated is True, batch_index_list is sorted according to its generated env_steps | |
0: reanalyze_num -> reanalyzed policy, reanalyze_num:end -> non reanalyzed policy | |
""" | |
reanalyze_num = int(batch_size * reanalyze_ratio) | |
# reanalyzed policy | |
if reanalyze_num > 0: | |
# obtain the context of reanalyzed policy targets | |
policy_re_context = self._prepare_policy_reanalyzed_context( | |
batch_index_list[:reanalyze_num], game_segment_list[:reanalyze_num], | |
pos_in_game_segment_list[:reanalyze_num] | |
) | |
else: | |
policy_re_context = None | |
# non reanalyzed policy | |
if reanalyze_num < batch_size: | |
# obtain the context of non-reanalyzed policy targets | |
policy_non_re_context = self._prepare_policy_non_reanalyzed_context( | |
batch_index_list[reanalyze_num:], game_segment_list[reanalyze_num:], | |
pos_in_game_segment_list[reanalyze_num:] | |
) | |
else: | |
policy_non_re_context = None | |
context = reward_value_context, policy_re_context, policy_non_re_context, current_batch | |
return context | |
def update_priority(self, train_data: List[np.ndarray], batch_priorities: Any) -> None: | |
""" | |
Overview: | |
Update the priority of training data. | |
Arguments: | |
- train_data (:obj:`Optional[List[Optional[np.ndarray]]]`): training data to be updated priority. | |
- batch_priorities (:obj:`batch_priorities`): priorities to update to. | |
NOTE: | |
train_data = [current_batch, target_batch] | |
if self._cfg.use_ture_chance_label_in_chance_encoder: | |
obs_batch_orig, action_batch, mask_batch, indices, weights, make_time, chance_batch = current_batch | |
else: | |
obs_batch_orig, action_batch, mask_batch, indices, weights, make_time = current_batch | |
""" | |
indices = train_data[0][3] | |
metas = {'make_time': train_data[0][5], 'batch_priorities': batch_priorities} | |
# only update the priorities for data still in replay buffer | |
for i in range(len(indices)): | |
if metas['make_time'][i] > self.clear_time: | |
idx, prio = indices[i], metas['batch_priorities'][i] | |
self.game_pos_priorities[idx] = prio | |