Spaces:
Sleeping
Sleeping
// C++11 | |
template <class T> | |
size_t hash_combine(std::size_t &seed, const T &val) | |
{ | |
/* | |
Overview: | |
Combines a hash value with a new value using a bitwise XOR and a rotation. | |
This function is used to create a hash value for multiple values. | |
Arguments: | |
- seed The current hash value to be combined with. | |
- val The new value to be hashed and combined with the seed. | |
*/ | |
std::hash<T> hasher; // Create a hash object for the new value. | |
seed ^= hasher(val) + 0x9e3779b9 + (seed << 6) + (seed >> 2); // Combine the new hash value with the seed. | |
return seed; | |
} | |
// Sort by the value of second in descending order. | |
bool cmp(std::pair<int, double> x, std::pair<int, double> y) | |
{ | |
return x.second > y.second; | |
} | |
namespace tree | |
{ | |
//********************************************************* | |
CAction::CAction() | |
{ | |
/* | |
Overview: | |
Initialization of CAction. Parameterized constructor. | |
*/ | |
this->is_root_action = 0; | |
} | |
CAction::CAction(std::vector<float> value, int is_root_action) | |
{ | |
/* | |
Overview: | |
Initialization of CAction with value and is_root_action. Default constructor. | |
Arguments: | |
- value: a multi-dimensional action. | |
- is_root_action: whether value is a root node. | |
*/ | |
this->value = value; | |
this->is_root_action = is_root_action; | |
} | |
CAction::~CAction() {} // Destructors. | |
std::vector<size_t> CAction::get_hash(void) | |
{ | |
/* | |
Overview: | |
get a hash value for each dimension in the multi-dimensional action. | |
*/ | |
std::vector<size_t> hash; | |
for (int i = 0; i < this->value.size(); ++i) | |
{ | |
std::size_t hash_i = std::hash<std::string>()(std::to_string(this->value[i])); | |
hash.push_back(hash_i); | |
} | |
return hash; | |
} | |
size_t CAction::get_combined_hash(void) | |
{ | |
/* | |
Overview: | |
get the final combined hash value from the hash values of each dimension of the multi-dimensional action. | |
*/ | |
std::vector<size_t> hash = this->get_hash(); | |
size_t combined_hash = hash[0]; | |
if (hash.size() >= 1) | |
{ | |
for (int i = 1; i < hash.size(); ++i) | |
{ | |
combined_hash = hash_combine(combined_hash, hash[i]); | |
} | |
} | |
return combined_hash; | |
} | |
//********************************************************* | |
CSearchResults::CSearchResults() | |
{ | |
/* | |
Overview: | |
Initialization of CSearchResults, the default result number is set to 0. | |
*/ | |
this->num = 0; | |
} | |
CSearchResults::CSearchResults(int num) | |
{ | |
/* | |
Overview: | |
Initialization of CSearchResults with result number. | |
*/ | |
this->num = num; | |
for (int i = 0; i < num; ++i) | |
{ | |
this->search_paths.push_back(std::vector<CNode *>()); | |
} | |
} | |
CSearchResults::~CSearchResults() {} | |
//********************************************************* | |
CNode::CNode() | |
{ | |
/* | |
Overview: | |
Initialization of CNode. | |
*/ | |
this->prior = 0; | |
this->action_space_size = 9; | |
this->num_of_sampled_actions = 20; | |
this->continuous_action_space = false; | |
this->is_reset = 0; | |
this->visit_count = 0; | |
this->value_sum = 0; | |
CAction best_action; | |
this->best_action = best_action; | |
this->to_play = 0; | |
this->value_prefix = 0.0; | |
this->parent_value_prefix = 0.0; | |
} | |
CNode::CNode(float prior, std::vector<CAction> &legal_actions, int action_space_size, int num_of_sampled_actions, bool continuous_action_space) | |
{ | |
/* | |
Overview: | |
Initialization of CNode with prior, legal actions, action_space_size, num_of_sampled_actions, continuous_action_space. | |
Arguments: | |
- prior: the prior value of this node. | |
- legal_actions: a vector of legal actions of this node. | |
- action_space_size: the size of action space of the current env. | |
- num_of_sampled_actions: the number of sampled actions, i.e. K in the Sampled MuZero papers. | |
- continuous_action_space: whether the action space is continous in current env. | |
*/ | |
this->prior = prior; | |
this->legal_actions = legal_actions; | |
this->action_space_size = action_space_size; | |
this->num_of_sampled_actions = num_of_sampled_actions; | |
this->continuous_action_space = continuous_action_space; | |
this->is_reset = 0; | |
this->visit_count = 0; | |
this->value_sum = 0; | |
this->to_play = 0; | |
this->value_prefix = 0.0; | |
this->parent_value_prefix = 0.0; | |
this->current_latent_state_index = -1; | |
this->batch_index = -1; | |
} | |
CNode::~CNode() {} | |
void CNode::expand(int to_play, int current_latent_state_index, int batch_index, float value_prefix, const std::vector<float> &policy_logits) | |
{ | |
/* | |
Overview: | |
Expand the child nodes of the current node. | |
Arguments: | |
- to_play: which player to play the game in the current node. | |
- current_latent_state_index: the x/first index of hidden state vector of the current node, i.e. the search depth. | |
- batch_index: the y/second index of hidden state vector of the current node, i.e. the index of batch root node, its maximum is ``batch_size``/``env_num``. | |
- value_prefix: the value prefix of the current node. | |
- policy_logits: the logit of the child nodes. | |
*/ | |
this->to_play = to_play; | |
this->current_latent_state_index = current_latent_state_index; | |
this->batch_index = batch_index; | |
this->value_prefix = value_prefix; | |
int action_num = policy_logits.size(); | |
// 创建动态数组 | |
float* policy = new float[action_num]; | |
float policy[action_num]; | |
std::vector<int> all_actions; | |
for (int i = 0; i < action_num; ++i) | |
{ | |
all_actions.push_back(i); | |
} | |
std::vector<std::vector<float> > sampled_actions_after_tanh; | |
std::vector<float> sampled_actions_log_probs_after_tanh; | |
std::vector<int> sampled_actions; | |
std::vector<float> sampled_actions_log_probs; | |
std::vector<float> sampled_actions_probs; | |
std::vector<float> probs; | |
/* | |
Overview: | |
When the currennt env has continuous action space, sampled K actions from continuous gaussia distribution policy. | |
When the currennt env has discrete action space, sampled K actions from discrete categirical distribution policy. | |
*/ | |
if (this->continuous_action_space == true) | |
{ | |
// continuous action space for sampled algo.. | |
this->action_space_size = policy_logits.size() / 2; | |
std::vector<float> mu; | |
std::vector<float> sigma; | |
for (int i = 0; i < this->action_space_size; ++i) | |
{ | |
mu.push_back(policy_logits[i]); | |
sigma.push_back(policy_logits[this->action_space_size + i]); | |
} | |
// The number of nanoseconds that have elapsed since epoch(1970: 00: 00 UTC on January 1, 1970). unsigned type will truncate this value. | |
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count(); | |
// SAC-like tanh, pleasee refer to paper https://arxiv.org/abs/1801.01290. | |
std::vector<std::vector<float> > sampled_actions_before_tanh; | |
float sampled_action_one_dim_before_tanh; | |
std::vector<float> sampled_actions_log_probs_before_tanh; | |
std::default_random_engine generator(seed); | |
for (int i = 0; i < this->num_of_sampled_actions; ++i) | |
{ | |
float sampled_action_prob_before_tanh = 1; | |
// TODO(pu): why here | |
std::vector<float> sampled_action_before_tanh; | |
std::vector<float> sampled_action_after_tanh; | |
std::vector<float> y; | |
for (int j = 0; j < this->action_space_size; ++j) | |
{ | |
std::normal_distribution<float> distribution(mu[j], sigma[j]); | |
sampled_action_one_dim_before_tanh = distribution(generator); | |
// refer to python normal log_prob method | |
sampled_action_prob_before_tanh *= exp(-pow((sampled_action_one_dim_before_tanh - mu[j]), 2) / (2 * pow(sigma[j], 2)) - log(sigma[j]) - log(sqrt(2 * M_PI))); | |
sampled_action_before_tanh.push_back(sampled_action_one_dim_before_tanh); | |
sampled_action_after_tanh.push_back(tanh(sampled_action_one_dim_before_tanh)); | |
y.push_back(1 - pow(tanh(sampled_action_one_dim_before_tanh), 2) + 1e-6); | |
} | |
sampled_actions_before_tanh.push_back(sampled_action_before_tanh); | |
sampled_actions_after_tanh.push_back(sampled_action_after_tanh); | |
sampled_actions_log_probs_before_tanh.push_back(log(sampled_action_prob_before_tanh)); | |
float y_sum = std::accumulate(y.begin(), y.end(), 0.); | |
sampled_actions_log_probs_after_tanh.push_back(log(sampled_action_prob_before_tanh) - log(y_sum)); | |
} | |
} | |
else | |
{ | |
// discrete action space for sampled algo.. | |
//======================================================== | |
// python code | |
//======================================================== | |
// if self.legal_actions is not None: | |
// # fisrt use the self.legal_actions to exclude the illegal actions | |
// policy_tmp = [0. for _ in range(self.action_space_size)] | |
// for index, legal_action in enumerate(self.legal_actions): | |
// policy_tmp[legal_action] = policy_logits[index] | |
// policy_logits = policy_tmp | |
// # then empty the self.legal_actions | |
// self.legal_actions = [] | |
// then empty the self.legal_actions | |
// prob = torch.softmax(torch.tensor(policy_logits), dim=-1) | |
// sampled_actions = torch.multinomial(prob, self.num_of_sampled_actions, replacement=False) | |
//======================================================== | |
// TODO(pu): legal actions | |
//======================================================== | |
// std::vector<float> policy_tmp; | |
// for (int i = 0; i < this->action_space_size; ++i) | |
// { | |
// policy_tmp.push_back(0.); | |
// } | |
// for (int i = 0; i < this->legal_actions.size(); ++i) | |
// { | |
// policy_tmp[this->legal_actions[i].value] = policy_logits[i]; | |
// } | |
// for (int i = 0; i < this->action_space_size; ++i) | |
// { | |
// policy_logits[i] = policy_tmp[i]; | |
// } | |
// std::cout << "position 3" << std::endl; | |
// python code: legal_actions = [] | |
std::vector<CAction> legal_actions; | |
// python code: probs = softmax(policy_logits) | |
float logits_exp_sum = 0; | |
for (int i = 0; i < policy_logits.size(); ++i) | |
{ | |
logits_exp_sum += exp(policy_logits[i]); | |
} | |
for (int i = 0; i < policy_logits.size(); ++i) | |
{ | |
probs.push_back(exp(policy_logits[i]) / (logits_exp_sum + 1e-6)); | |
} | |
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count(); | |
// cout << "sampled_action[0]:" << sampled_action[0] <<endl; | |
// std::vector<int> sampled_actions; | |
// std::vector<float> sampled_actions_log_probs; | |
// std::vector<float> sampled_actions_probs; | |
std::default_random_engine generator(seed); | |
// 有放回抽样 | |
// for (int i = 0; i < num_of_sampled_actions; ++i) | |
// { | |
// float sampled_action_prob = 1; | |
// int sampled_action; | |
// std::discrete_distribution<float> distribution(probs.begin(), probs.end()); | |
// // for (float x:distribution.probabilities()) std::cout << x << " "; | |
// sampled_action = distribution(generator); | |
// // std::cout << "sampled_action: " << sampled_action << std::endl; | |
// sampled_actions.push_back(sampled_action); | |
// sampled_actions_probs.push_back(probs[sampled_action]); | |
// std::cout << "sampled_actions_probs" << '[' << i << ']' << sampled_actions_probs[i] << std::endl; | |
// sampled_actions_log_probs.push_back(log(probs[sampled_action])); | |
// std::cout << "sampled_actions_log_probs" << '[' << i << ']' << sampled_actions_log_probs[i] << std::endl; | |
// } | |
// 每个节点的legal_actions应该为一个固定离散集合,所以采用无放回抽样 | |
// std::cout << "position uniform_distribution init" << std::endl; | |
std::uniform_real_distribution<double> uniform_distribution(0.0, 1.0); //均匀分布 | |
// std::cout << "position uniform_distribution done" << std::endl; | |
std::vector<double> disturbed_probs; | |
std::vector<std::pair<int, double> > disc_action_with_probs; | |
// Use the reciprocal of the probability value as the exponent and a random number sampled from a uniform distribution as the base: | |
// Equivalent to adding a uniform random disturbance to the original probability value. | |
for (auto prob : probs) | |
{ | |
disturbed_probs.push_back(std::pow(uniform_distribution(generator), 1. / prob)); | |
} | |
// Sort from large to small according to the probability value after the disturbance: | |
// After sorting, the first vector is the index, and the second vector is the probability value after perturbation sorted from large to small. | |
for (size_t iter = 0; iter < disturbed_probs.size(); iter++) | |
{ | |
// Use push_back for GCC | |
disc_action_with_probs.push_back(std::make_pair(iter, disturbed_probs[iter])); | |
// Use emplace_back for other compilers | |
disc_action_with_probs.emplace_back(std::make_pair(iter, disturbed_probs[iter])); | |
} | |
std::sort(disc_action_with_probs.begin(), disc_action_with_probs.end(), cmp); | |
// take the fist ``num_of_sampled_actions`` actions | |
for (int k = 0; k < num_of_sampled_actions; ++k) | |
{ | |
sampled_actions.push_back(disc_action_with_probs[k].first); | |
// disc_action_with_probs[k].second is disturbed_probs | |
// sampled_actions_probs.push_back(disc_action_with_probs[k].second); | |
sampled_actions_probs.push_back(probs[disc_action_with_probs[k].first]); | |
// TODO(pu): logging | |
// std::cout << "sampled_actions[k]: " << sampled_actions[k] << std::endl; | |
// std::cout << "sampled_actions_probs[k]: " << sampled_actions_probs[k] << std::endl; | |
} | |
// TODO(pu): fixed k, only for debugging | |
// Take the first ``num_of_sampled_actions`` actions: k=0,1,...,K-1 | |
// for (int k = 0; k < num_of_sampled_actions; ++k) | |
// { | |
// sampled_actions.push_back(k); | |
// // disc_action_with_probs[k].second is disturbed_probs | |
// // sampled_actions_probs.push_back(disc_action_with_probs[k].second); | |
// sampled_actions_probs.push_back(probs[k]); | |
// } | |
disturbed_probs.clear(); // Empty the collection to prepare for the next sampling. | |
disc_action_with_probs.clear(); // Empty the collection to prepare for the next sampling. | |
} | |
float prior; | |
for (int i = 0; i < this->num_of_sampled_actions; ++i) | |
{ | |
if (this->continuous_action_space == true) | |
{ | |
CAction action = CAction(sampled_actions_after_tanh[i], 0); | |
std::vector<CAction> legal_actions; | |
this->children[action.get_combined_hash()] = CNode(sampled_actions_log_probs_after_tanh[i], legal_actions, this->action_space_size, this->num_of_sampled_actions, this->continuous_action_space); // only for muzero/efficient zero, not support alphazero | |
this->legal_actions.push_back(action); | |
} | |
else | |
{ | |
std::vector<float> sampled_action_tmp; | |
for (size_t iter = 0; iter < 1; iter++) | |
{ | |
sampled_action_tmp.push_back(float(sampled_actions[i])); | |
} | |
CAction action = CAction(sampled_action_tmp, 0); | |
std::vector<CAction> legal_actions; | |
this->children[action.get_combined_hash()] = CNode(sampled_actions_probs[i], legal_actions, this->action_space_size, this->num_of_sampled_actions, this->continuous_action_space); // only for muzero/efficient zero, not support alphazero | |
this->legal_actions.push_back(action); | |
} | |
} | |
// 释放数组内存 | |
delete[] policy; | |
} | |
void CNode::add_exploration_noise(float exploration_fraction, const std::vector<float> &noises) | |
{ | |
/* | |
Overview: | |
Add a noise to the prior of the child nodes. | |
Arguments: | |
- exploration_fraction: the fraction to add noise. | |
- noises: the vector of noises added to each child node. | |
*/ | |
float noise, prior; | |
for (int i = 0; i < this->num_of_sampled_actions; ++i) | |
{ | |
noise = noises[i]; | |
CNode *child = this->get_child(this->legal_actions[i]); | |
prior = child->prior; | |
if (this->continuous_action_space == true) | |
{ | |
// if prior is log_prob | |
child->prior = log(exp(prior) * (1 - exploration_fraction) + noise * exploration_fraction + 1e-6); | |
} | |
else | |
{ | |
// if prior is prob | |
child->prior = prior * (1 - exploration_fraction) + noise * exploration_fraction; | |
} | |
} | |
} | |
float CNode::compute_mean_q(int isRoot, float parent_q, float discount_factor) | |
{ | |
/* | |
Overview: | |
Compute the mean q value of the current node. | |
Arguments: | |
- isRoot: whether the current node is a root node. | |
- parent_q: the q value of the parent node. | |
- discount_factor: the discount_factor of reward. | |
*/ | |
float total_unsigned_q = 0.0; | |
int total_visits = 0; | |
float parent_value_prefix = this->value_prefix; | |
for (auto a : this->legal_actions) | |
{ | |
CNode *child = this->get_child(a); | |
if (child->visit_count > 0) | |
{ | |
float true_reward = child->value_prefix - parent_value_prefix; | |
if (this->is_reset == 1) | |
{ | |
true_reward = child->value_prefix; | |
} | |
float qsa = true_reward + discount_factor * child->value(); | |
total_unsigned_q += qsa; | |
total_visits += 1; | |
} | |
} | |
float mean_q = 0.0; | |
if (isRoot && total_visits > 0) | |
{ | |
mean_q = (total_unsigned_q) / (total_visits); | |
} | |
else | |
{ | |
mean_q = (parent_q + total_unsigned_q) / (total_visits + 1); | |
} | |
return mean_q; | |
} | |
void CNode::print_out() | |
{ | |
return; | |
} | |
int CNode::expanded() | |
{ | |
/* | |
Overview: | |
Return whether the current node is expanded. | |
*/ | |
return this->children.size() > 0; | |
} | |
float CNode::value() | |
{ | |
/* | |
Overview: | |
Return the real value of the current tree. | |
*/ | |
float true_value = 0.0; | |
if (this->visit_count == 0) | |
{ | |
return true_value; | |
} | |
else | |
{ | |
true_value = this->value_sum / this->visit_count; | |
return true_value; | |
} | |
} | |
std::vector<std::vector<float> > CNode::get_trajectory() | |
{ | |
/* | |
Overview: | |
Find the current best trajectory starts from the current node. | |
Outputs: | |
- traj: a vector of node index, which is the current best trajectory from this node. | |
*/ | |
std::vector<CAction> traj; | |
CNode *node = this; | |
CAction best_action = node->best_action; | |
while (best_action.is_root_action != 1) | |
{ | |
traj.push_back(best_action); | |
node = node->get_child(best_action); | |
best_action = node->best_action; | |
} | |
std::vector<std::vector<float> > traj_return; | |
for (int i = 0; i < traj.size(); ++i) | |
{ | |
traj_return.push_back(traj[i].value); | |
} | |
return traj_return; | |
} | |
std::vector<int> CNode::get_children_distribution() | |
{ | |
/* | |
Overview: | |
Get the distribution of child nodes in the format of visit_count. | |
Outputs: | |
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]). | |
*/ | |
std::vector<int> distribution; | |
if (this->expanded()) | |
{ | |
for (auto a : this->legal_actions) | |
{ | |
CNode *child = this->get_child(a); | |
distribution.push_back(child->visit_count); | |
} | |
} | |
return distribution; | |
} | |
CNode *CNode::get_child(CAction action) | |
{ | |
/* | |
Overview: | |
Get the child node corresponding to the input action. | |
Arguments: | |
- action: the action to get child. | |
*/ | |
return &(this->children[action.get_combined_hash()]); | |
// TODO(pu): no hash | |
// return &(this->children[action]); | |
// return &(this->children[action.value[0]]); | |
} | |
//********************************************************* | |
CRoots::CRoots() | |
{ | |
this->root_num = 0; | |
this->num_of_sampled_actions = 20; | |
} | |
CRoots::CRoots(int root_num, std::vector<std::vector<float> > legal_actions_list, int action_space_size, int num_of_sampled_actions, bool continuous_action_space) | |
{ | |
/* | |
Overview: | |
Initialization of CNode with root_num, legal_actions_list, action_space_size, num_of_sampled_actions, continuous_action_space. | |
Arguments: | |
- root_num: the number of the current root. | |
- legal_action_list: the vector of the legal action of this root. | |
- action_space_size: the size of action space of the current env. | |
- num_of_sampled_actions: the number of sampled actions, i.e. K in the Sampled MuZero papers. | |
- continuous_action_space: whether the action space is continous in current env. | |
*/ | |
this->root_num = root_num; | |
this->legal_actions_list = legal_actions_list; | |
this->continuous_action_space = continuous_action_space; | |
// sampled related core code | |
this->num_of_sampled_actions = num_of_sampled_actions; | |
this->action_space_size = action_space_size; | |
for (int i = 0; i < this->root_num; ++i) | |
{ | |
if (this->continuous_action_space == true and this->legal_actions_list[0][0] == -1) | |
{ | |
// continous action space | |
std::vector<CAction> legal_actions; | |
this->roots.push_back(CNode(0, legal_actions, this->action_space_size, this->num_of_sampled_actions, this->continuous_action_space)); | |
} | |
else if (this->continuous_action_space == false or this->legal_actions_list[0][0] == -1) | |
{ | |
// sampled | |
// discrete action space without action mask | |
std::vector<CAction> legal_actions; | |
this->roots.push_back(CNode(0, legal_actions, this->action_space_size, this->num_of_sampled_actions, this->continuous_action_space)); | |
} | |
else | |
{ | |
// TODO(pu): discrete action space | |
std::vector<CAction> c_legal_actions; | |
for (int i = 0; i < this->legal_actions_list.size(); ++i) | |
{ | |
CAction c_legal_action = CAction(legal_actions_list[i], 0); | |
c_legal_actions.push_back(c_legal_action); | |
} | |
this->roots.push_back(CNode(0, c_legal_actions, this->action_space_size, this->num_of_sampled_actions, this->continuous_action_space)); | |
} | |
} | |
} | |
CRoots::~CRoots() {} | |
void CRoots::prepare(float root_noise_weight, const std::vector<std::vector<float> > &noises, const std::vector<float> &value_prefixs, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch) | |
{ | |
/* | |
Overview: | |
Expand the roots and add noises. | |
Arguments: | |
- root_noise_weight: the exploration fraction of roots | |
- noises: the vector of noise add to the roots. | |
- value_prefixs: the vector of value prefixs of each root. | |
- policies: the vector of policy logits of each root. | |
- to_play_batch: the vector of the player side of each root. | |
*/ | |
// sampled related core code | |
for (int i = 0; i < this->root_num; ++i) | |
{ | |
this->roots[i].expand(to_play_batch[i], 0, i, value_prefixs[i], policies[i]); | |
this->roots[i].add_exploration_noise(root_noise_weight, noises[i]); | |
this->roots[i].visit_count += 1; | |
} | |
} | |
void CRoots::prepare_no_noise(const std::vector<float> &value_prefixs, const std::vector<std::vector<float> > &policies, std::vector<int> &to_play_batch) | |
{ | |
/* | |
Overview: | |
Expand the roots without noise. | |
Arguments: | |
- value_prefixs: the vector of value prefixs of each root. | |
- policies: the vector of policy logits of each root. | |
- to_play_batch: the vector of the player side of each root. | |
*/ | |
for (int i = 0; i < this->root_num; ++i) | |
{ | |
this->roots[i].expand(to_play_batch[i], 0, i, value_prefixs[i], policies[i]); | |
this->roots[i].visit_count += 1; | |
} | |
} | |
void CRoots::clear() | |
{ | |
this->roots.clear(); | |
} | |
std::vector<std::vector<std::vector<float> > > CRoots::get_trajectories() | |
{ | |
/* | |
Overview: | |
Find the current best trajectory starts from each root. | |
Outputs: | |
- traj: a vector of node index, which is the current best trajectory from each root. | |
*/ | |
std::vector<std::vector<std::vector<float> > > trajs; | |
trajs.reserve(this->root_num); | |
for (int i = 0; i < this->root_num; ++i) | |
{ | |
trajs.push_back(this->roots[i].get_trajectory()); | |
} | |
return trajs; | |
} | |
std::vector<std::vector<int> > CRoots::get_distributions() | |
{ | |
/* | |
Overview: | |
Get the children distribution of each root. | |
Outputs: | |
- distribution: a vector of distribution of child nodes in the format of visit count (i.e. [1,3,0,2,5]). | |
*/ | |
std::vector<std::vector<int> > distributions; | |
distributions.reserve(this->root_num); | |
for (int i = 0; i < this->root_num; ++i) | |
{ | |
distributions.push_back(this->roots[i].get_children_distribution()); | |
} | |
return distributions; | |
} | |
// sampled related core code | |
std::vector<std::vector<std::vector<float> > > CRoots::get_sampled_actions() | |
{ | |
/* | |
Overview: | |
Get the sampled_actions of each root. | |
Outputs: | |
- python_sampled_actions: a vector of sampled_actions for each root, e.g. the size of original action space is 6, the K=3, | |
python_sampled_actions = [[1,3,0], [2,4,0], [5,4,1]]. | |
*/ | |
std::vector<std::vector<CAction> > sampled_actions; | |
std::vector<std::vector<std::vector<float> > > python_sampled_actions; | |
// sampled_actions.reserve(this->root_num); | |
for (int i = 0; i < this->root_num; ++i) | |
{ | |
std::vector<CAction> sampled_action; | |
sampled_action = this->roots[i].legal_actions; | |
std::vector<std::vector<float> > python_sampled_action; | |
for (int j = 0; j < this->roots[i].legal_actions.size(); ++j) | |
{ | |
python_sampled_action.push_back(sampled_action[j].value); | |
} | |
python_sampled_actions.push_back(python_sampled_action); | |
} | |
return python_sampled_actions; | |
} | |
std::vector<float> CRoots::get_values() | |
{ | |
/* | |
Overview: | |
Return the estimated value of each root. | |
*/ | |
std::vector<float> values; | |
for (int i = 0; i < this->root_num; ++i) | |
{ | |
values.push_back(this->roots[i].value()); | |
} | |
return values; | |
} | |
//********************************************************* | |
// | |
void update_tree_q(CNode *root, tools::CMinMaxStats &min_max_stats, float discount_factor, int players) | |
{ | |
/* | |
Overview: | |
Update the q value of the root and its child nodes. | |
Arguments: | |
- root: the root that update q value from. | |
- min_max_stats: a tool used to min-max normalize the q value. | |
- discount_factor: the discount factor of reward. | |
- players: the number of players. | |
*/ | |
std::stack<CNode *> node_stack; | |
node_stack.push(root); | |
float parent_value_prefix = 0.0; | |
int is_reset = 0; | |
while (node_stack.size() > 0) | |
{ | |
CNode *node = node_stack.top(); | |
node_stack.pop(); | |
if (node != root) | |
{ | |
// NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node, | |
// but treated as 1 player, just for obtaining the true reward in the perspective of current player of node. | |
// true_reward = node.value_prefix - (- parent_value_prefix) | |
float true_reward = node->value_prefix - node->parent_value_prefix; | |
if (is_reset == 1) | |
{ | |
true_reward = node->value_prefix; | |
} | |
float qsa; | |
if (players == 1) | |
qsa = true_reward + discount_factor * node->value(); | |
else if (players == 2) | |
// TODO(pu): why only the last reward multiply the discount_factor? | |
qsa = true_reward + discount_factor * (-1) * node->value(); | |
min_max_stats.update(qsa); | |
} | |
for (auto a : node->legal_actions) | |
{ | |
CNode *child = node->get_child(a); | |
if (child->expanded()) | |
{ | |
child->parent_value_prefix = node->value_prefix; | |
node_stack.push(child); | |
} | |
} | |
is_reset = node->is_reset; | |
} | |
} | |
void cbackpropagate(std::vector<CNode *> &search_path, tools::CMinMaxStats &min_max_stats, int to_play, float value, float discount_factor) | |
{ | |
/* | |
Overview: | |
Update the value sum and visit count of nodes along the search path. | |
Arguments: | |
- search_path: a vector of nodes on the search path. | |
- min_max_stats: a tool used to min-max normalize the q value. | |
- to_play: which player to play the game in the current node. | |
- value: the value to propagate along the search path. | |
- discount_factor: the discount factor of reward. | |
*/ | |
assert(to_play == -1 || to_play == 1 || to_play == 2); | |
if (to_play == -1) | |
{ | |
// for play-with-bot-mode | |
float bootstrap_value = value; | |
int path_len = search_path.size(); | |
for (int i = path_len - 1; i >= 0; --i) | |
{ | |
CNode *node = search_path[i]; | |
node->value_sum += bootstrap_value; | |
node->visit_count += 1; | |
float parent_value_prefix = 0.0; | |
int is_reset = 0; | |
if (i >= 1) | |
{ | |
CNode *parent = search_path[i - 1]; | |
parent_value_prefix = parent->value_prefix; | |
is_reset = parent->is_reset; | |
} | |
float true_reward = node->value_prefix - parent_value_prefix; | |
min_max_stats.update(true_reward + discount_factor * node->value()); | |
if (is_reset == 1) | |
{ | |
// parent is reset. | |
true_reward = node->value_prefix; | |
} | |
bootstrap_value = true_reward + discount_factor * bootstrap_value; | |
} | |
} | |
else | |
{ | |
// for self-play-mode | |
float bootstrap_value = value; | |
int path_len = search_path.size(); | |
for (int i = path_len - 1; i >= 0; --i) | |
{ | |
CNode *node = search_path[i]; | |
if (node->to_play == to_play) | |
node->value_sum += bootstrap_value; | |
else | |
node->value_sum += -bootstrap_value; | |
node->visit_count += 1; | |
float parent_value_prefix = 0.0; | |
int is_reset = 0; | |
if (i >= 1) | |
{ | |
CNode *parent = search_path[i - 1]; | |
parent_value_prefix = parent->value_prefix; | |
is_reset = parent->is_reset; | |
} | |
// NOTE: in self-play-mode, value_prefix is not calculated according to the perspective of current player of node, | |
// but treated as 1 player, just for obtaining the true reward in the perspective of current player of node. | |
float true_reward = node->value_prefix - parent_value_prefix; | |
min_max_stats.update(true_reward + discount_factor * node->value()); | |
if (is_reset == 1) | |
{ | |
// parent is reset. | |
true_reward = node->value_prefix; | |
} | |
if (node->to_play == to_play) | |
bootstrap_value = -true_reward + discount_factor * bootstrap_value; | |
else | |
bootstrap_value = true_reward + discount_factor * bootstrap_value; | |
} | |
} | |
} | |
void cbatch_backpropagate(int current_latent_state_index, float discount_factor, const std::vector<float> &value_prefixs, const std::vector<float> &values, const std::vector<std::vector<float> > &policies, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> is_reset_list, std::vector<int> &to_play_batch) | |
{ | |
/* | |
Overview: | |
Expand the nodes along the search path and update the infos. | |
Arguments: | |
- current_latent_state_index: The index of latent state of the leaf node in the search path. | |
- discount_factor: the discount factor of reward. | |
- value_prefixs: the value prefixs of nodes along the search path. | |
- values: the values to propagate along the search path. | |
- policies: the policy logits of nodes along the search path. | |
- min_max_stats: a tool used to min-max normalize the q value. | |
- results: the search results. | |
- is_reset_list: the vector of is_reset nodes along the search path, where is_reset represents for whether the parent value prefix needs to be reset. | |
- to_play_batch: the batch of which player is playing on this node. | |
*/ | |
for (int i = 0; i < results.num; ++i) | |
{ | |
results.nodes[i]->expand(to_play_batch[i], current_latent_state_index, i, value_prefixs[i], policies[i]); | |
// reset | |
results.nodes[i]->is_reset = is_reset_list[i]; | |
cbackpropagate(results.search_paths[i], min_max_stats_lst->stats_lst[i], to_play_batch[i], values[i], discount_factor); | |
} | |
} | |
CAction cselect_child(CNode *root, tools::CMinMaxStats &min_max_stats, int pb_c_base, float pb_c_init, float discount_factor, float mean_q, int players, bool continuous_action_space) | |
{ | |
/* | |
Overview: | |
Select the child node of the roots according to ucb scores. | |
Arguments: | |
- root: the roots to select the child node. | |
- min_max_stats: a tool used to min-max normalize the score. | |
- pb_c_base: constants c2 in muzero. | |
- pb_c_init: constants c1 in muzero. | |
- disount_factor: the discount factor of reward. | |
- mean_q: the mean q value of the parent node. | |
- players: the number of players. | |
- continuous_action_space: whether the action space is continous in current env. | |
Outputs: | |
- action: the action to select. | |
*/ | |
// sampled related core code | |
// TODO(pu): Progressive widening (See https://hal.archives-ouvertes.fr/hal-00542673v2/document) | |
float max_score = FLOAT_MIN; | |
const float epsilon = 0.000001; | |
std::vector<CAction> max_index_lst; | |
for (auto a : root->legal_actions) | |
{ | |
CNode *child = root->get_child(a); | |
// sampled related core code | |
float temp_score = cucb_score(root, child, min_max_stats, mean_q, root->is_reset, root->visit_count - 1, root->value_prefix, pb_c_base, pb_c_init, discount_factor, players, continuous_action_space); | |
if (max_score < temp_score) | |
{ | |
max_score = temp_score; | |
max_index_lst.clear(); | |
max_index_lst.push_back(a); | |
} | |
else if (temp_score >= max_score - epsilon) | |
{ | |
max_index_lst.push_back(a); | |
} | |
} | |
// python code: int action = 0; | |
CAction action; | |
if (max_index_lst.size() > 0) | |
{ | |
int rand_index = rand() % max_index_lst.size(); | |
action = max_index_lst[rand_index]; | |
} | |
return action; | |
} | |
// sampled related core code | |
float cucb_score(CNode *parent, CNode *child, tools::CMinMaxStats &min_max_stats, float parent_mean_q, int is_reset, float total_children_visit_counts, float parent_value_prefix, float pb_c_base, float pb_c_init, float discount_factor, int players, bool continuous_action_space) | |
{ | |
/* | |
Overview: | |
Compute the ucb score of the child. | |
Arguments: | |
- child: the child node to compute ucb score. | |
- min_max_stats: a tool used to min-max normalize the score. | |
- parent_mean_q: the mean q value of the parent node. | |
- is_reset: whether the value prefix needs to be reset. | |
- total_children_visit_counts: the total visit counts of the child nodes of the parent node. | |
- parent_value_prefix: the value prefix of parent node. | |
- pb_c_base: constants c2 in muzero. | |
- pb_c_init: constants c1 in muzero. | |
- disount_factor: the discount factor of reward. | |
- players: the number of players. | |
- continuous_action_space: whether the action space is continous in current env. | |
Outputs: | |
- ucb_value: the ucb score of the child. | |
*/ | |
float pb_c = 0.0, prior_score = 0.0, value_score = 0.0; | |
pb_c = log((total_children_visit_counts + pb_c_base + 1) / pb_c_base) + pb_c_init; | |
pb_c *= (sqrt(total_children_visit_counts) / (child->visit_count + 1)); | |
// prior_score = pb_c * child->prior; | |
// sampled related core code | |
// TODO(pu): empirical distribution | |
std::string empirical_distribution_type = "density"; | |
if (empirical_distribution_type.compare("density")) | |
{ | |
if (continuous_action_space == true) | |
{ | |
float empirical_prob_sum = 0; | |
for (int i = 0; i < parent->children.size(); ++i) | |
{ | |
empirical_prob_sum += exp(parent->get_child(parent->legal_actions[i])->prior); | |
} | |
prior_score = pb_c * exp(child->prior) / (empirical_prob_sum + 1e-6); | |
} | |
else | |
{ | |
float empirical_prob_sum = 0; | |
for (int i = 0; i < parent->children.size(); ++i) | |
{ | |
empirical_prob_sum += parent->get_child(parent->legal_actions[i])->prior; | |
} | |
prior_score = pb_c * child->prior / (empirical_prob_sum + 1e-6); | |
} | |
} | |
else if (empirical_distribution_type.compare("uniform")) | |
{ | |
prior_score = pb_c * 1 / parent->children.size(); | |
} | |
// sampled related core code | |
if (child->visit_count == 0) | |
{ | |
value_score = parent_mean_q; | |
} | |
else | |
{ | |
float true_reward = child->value_prefix - parent_value_prefix; | |
if (is_reset == 1) | |
{ | |
true_reward = child->value_prefix; | |
} | |
if (players == 1) | |
value_score = true_reward + discount_factor * child->value(); | |
else if (players == 2) | |
value_score = true_reward + discount_factor * (-child->value()); | |
} | |
value_score = min_max_stats.normalize(value_score); | |
if (value_score < 0) | |
value_score = 0; | |
if (value_score > 1) | |
value_score = 1; | |
float ucb_value = prior_score + value_score; | |
return ucb_value; | |
} | |
void cbatch_traverse(CRoots *roots, int pb_c_base, float pb_c_init, float discount_factor, tools::CMinMaxStatsList *min_max_stats_lst, CSearchResults &results, std::vector<int> &virtual_to_play_batch, bool continuous_action_space) | |
{ | |
/* | |
Overview: | |
Search node path from the roots. | |
Arguments: | |
- roots: the roots that search from. | |
- pb_c_base: constants c2 in muzero. | |
- pb_c_init: constants c1 in muzero. | |
- disount_factor: the discount factor of reward. | |
- min_max_stats: a tool used to min-max normalize the score. | |
- results: the search results. | |
- virtual_to_play_batch: the batch of which player is playing on this node. | |
- continuous_action_space: whether the action space is continous in current env. | |
*/ | |
// set seed | |
get_time_and_set_rand_seed(); | |
std::vector<float> null_value; | |
for (int i = 0; i < 1; ++i) | |
{ | |
null_value.push_back(i + 0.1); | |
} | |
// CAction last_action = CAction(null_value, 1); | |
std::vector<float> last_action; | |
float parent_q = 0.0; | |
results.search_lens = std::vector<int>(); | |
int players = 0; | |
int largest_element = *max_element(virtual_to_play_batch.begin(), virtual_to_play_batch.end()); // 0 or 2 | |
if (largest_element == -1) | |
players = 1; | |
else | |
players = 2; | |
for (int i = 0; i < results.num; ++i) | |
{ | |
CNode *node = &(roots->roots[i]); | |
int is_root = 1; | |
int search_len = 0; | |
results.search_paths[i].push_back(node); | |
while (node->expanded()) | |
{ | |
float mean_q = node->compute_mean_q(is_root, parent_q, discount_factor); | |
is_root = 0; | |
parent_q = mean_q; | |
CAction action = cselect_child(node, min_max_stats_lst->stats_lst[i], pb_c_base, pb_c_init, discount_factor, mean_q, players, continuous_action_space); | |
if (players > 1) | |
{ | |
assert(virtual_to_play_batch[i] == 1 || virtual_to_play_batch[i] == 2); | |
if (virtual_to_play_batch[i] == 1) | |
virtual_to_play_batch[i] = 2; | |
else | |
virtual_to_play_batch[i] = 1; | |
} | |
node->best_action = action; // CAction | |
// next | |
node = node->get_child(action); | |
last_action = action.value; | |
results.search_paths[i].push_back(node); | |
search_len += 1; | |
} | |
CNode *parent = results.search_paths[i][results.search_paths[i].size() - 2]; | |
results.latent_state_index_in_search_path.push_back(parent->current_latent_state_index); | |
results.latent_state_index_in_batch.push_back(parent->batch_index); | |
results.last_actions.push_back(last_action); | |
results.search_lens.push_back(search_len); | |
results.nodes.push_back(node); | |
results.virtual_to_play_batchs.push_back(virtual_to_play_batch[i]); | |
} | |
} | |
} | |