Spaces:
Sleeping
Sleeping
import torch | |
from easydict import EasyDict | |
from lzero.policy import inverse_scalar_transform, select_action | |
import numpy as np | |
import random | |
from lzero.mcts.tree_search.mcts_ptree import EfficientZeroMCTSPtree as MCTSPtree | |
from lzero.mcts.tree_search.mcts_ctree import EfficientZeroMCTSCtree as MCTSCtree | |
import time | |
class MuZeroModelFake(torch.nn.Module): | |
""" | |
Overview: | |
Fake MuZero model just for test EfficientZeroMCTSPtree. | |
Interfaces: | |
__init__, initial_inference, recurrent_inference | |
""" | |
def __init__(self, action_num): | |
super().__init__() | |
self.action_num = action_num | |
def initial_inference(self, observation): | |
encoded_state = observation | |
batch_size = encoded_state.shape[0] | |
value = torch.zeros(size=(batch_size, 601)) | |
value_prefix = [0. for _ in range(batch_size)] | |
policy_logits = torch.zeros(size=(batch_size, self.action_num)) | |
latent_state = torch.zeros(size=(batch_size, 12, 3, 3)) | |
reward_hidden_state_state = (torch.zeros(size=(1, batch_size, 16)), torch.zeros(size=(1, batch_size, 16))) | |
output = { | |
'searched_value': value, | |
'value_prefix': value_prefix, | |
'policy_logits': policy_logits, | |
'latent_state': latent_state, | |
'reward_hidden_state': reward_hidden_state_state | |
} | |
return EasyDict(output) | |
def recurrent_inference(self, hidden_states, reward_hidden_states, actions): | |
batch_size = hidden_states.shape[0] | |
latent_state = torch.zeros(size=(batch_size, 12, 3, 3)) | |
reward_hidden_state_state = (torch.zeros(size=(1, batch_size, 16)), torch.zeros(size=(1, batch_size, 16))) | |
value = torch.zeros(size=(batch_size, 601)) | |
value_prefix = torch.zeros(size=(batch_size, 601)) | |
policy_logits = torch.zeros(size=(batch_size, self.action_num)) | |
output = { | |
'searched_value': value, | |
'value_prefix': value_prefix, | |
'policy_logits': policy_logits, | |
'latent_state': latent_state, | |
'reward_hidden_state': reward_hidden_state_state | |
} | |
return EasyDict(output) | |
def ptree_func(policy_config, num_simulations): | |
""" | |
Overview: | |
Search on the tree of the Python implementation and record the time spent at different stages. | |
Arguments: | |
- policy_config: config of game. | |
- num_simulations: Number of simulations. | |
Returns: | |
- build_time: Type builds take time. | |
- prepare_time: time for prepare. | |
- search_time. | |
- total_time. | |
""" | |
batch_size = env_nums = policy_config.batch_size | |
action_space_size = policy_config.action_space_size | |
build_time = [] | |
prepare_time = [] | |
search_time = [] | |
total_time = [] | |
for n_s in num_simulations: | |
t0 = time.time() | |
model = MuZeroModelFake(action_num=action_space_size) | |
stack_obs = torch.zeros( | |
size=( | |
batch_size, | |
n_s, | |
), dtype=torch.float | |
) | |
policy_config.num_simulations = n_s | |
network_output = model.initial_inference(stack_obs.float()) | |
latent_state_roots = network_output['latent_state'] | |
reward_hidden_state_state = network_output['reward_hidden_state'] | |
pred_values_pool = network_output['value'] | |
value_prefix_pool = network_output['value_prefix'] | |
policy_logits_pool = network_output['policy_logits'] | |
# network output process | |
pred_values_pool = inverse_scalar_transform(pred_values_pool, | |
policy_config.model.support_scale).detach().cpu().numpy() | |
latent_state_roots = latent_state_roots.detach().cpu().numpy() | |
reward_hidden_state_state = ( | |
reward_hidden_state_state[0].detach().cpu().numpy(), reward_hidden_state_state[1].detach().cpu().numpy() | |
) | |
policy_logits_pool = policy_logits_pool.detach().cpu().numpy().tolist() | |
action_mask = [[random.randint(0, 1) for _ in range(action_space_size)] for _ in range(env_nums)] | |
assert len(action_mask) == batch_size | |
assert len(action_mask[0]) == action_space_size | |
action_num = [int(np.array(action_mask[i]).sum()) for i in range(env_nums)] | |
legal_actions_list = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(env_nums)] | |
to_play = [np.random.randint(1, 3) for i in range(env_nums)] | |
assert len(to_play) == batch_size | |
# ============================================ptree=====================================# | |
for i in range(env_nums): | |
assert action_num[i] == len(legal_actions_list[i]) | |
t1 = time.time() | |
roots = MCTSPtree.roots(env_nums, legal_actions_list) | |
build_time.append(time.time() - t1) | |
noises = [ | |
np.random.dirichlet([policy_config.root_dirichlet_alpha] * int(sum(action_mask[j])) | |
).astype(np.float32).tolist() for j in range(env_nums) | |
] | |
t1 = time.time() | |
roots.prepare(policy_config.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play) | |
prepare_time.append(time.time() - t1) | |
t1 = time.time() | |
MCTSPtree(policy_config).search(roots, model, latent_state_roots, reward_hidden_state_state, to_play) | |
search_time.append(time.time() - t1) | |
total_time.append(time.time() - t0) | |
roots_distributions = roots.get_distributions() | |
roots_values = roots.get_values() | |
assert len(roots_values) == env_nums | |
assert len(roots_values) == env_nums | |
for i in range(env_nums): | |
assert len(roots_distributions[i]) == action_num[i] | |
temperature = [1 for _ in range(env_nums)] | |
for i in range(env_nums): | |
distributions = roots_distributions[i] | |
action_index, visit_count_distribution_entropy = select_action( | |
distributions, temperature=temperature[i], deterministic=False | |
) | |
action = np.where(np.array(action_mask[i]) == 1.0)[0][action_index] | |
assert action_index < action_num[i] | |
assert action == legal_actions_list[i][action_index] | |
print('\n action_index={}, legal_action={}, action={}'.format(action_index, legal_actions_list[i], action)) | |
return build_time, prepare_time, search_time, total_time | |
def ctree_func(policy_config, num_simulations): | |
""" | |
Overview: | |
Search on the tree of the C++ implementation and record the time spent at different stages. | |
Arguments: | |
- policy_config: config of game. | |
- num_simulations: Number of simulations. | |
Returns: | |
- build_time: Type builds take time. | |
- prepare_time: time for prepare. | |
- search_time. | |
- total_time. | |
""" | |
batch_size = env_nums = policy_config.batch_size | |
action_space_size = policy_config.action_space_size | |
build_time = [] | |
prepare_time = [] | |
search_time = [] | |
total_time = [] | |
for n_s in num_simulations: | |
t0 = time.time() | |
model = MuZeroModelFake(action_num=action_space_size) | |
stack_obs = torch.zeros( | |
size=( | |
batch_size, | |
n_s, | |
), dtype=torch.float | |
) | |
policy_config.num_simulations = n_s | |
network_output = model.initial_inference(stack_obs.float()) | |
latent_state_roots = network_output['latent_state'] | |
reward_hidden_state_state = network_output['reward_hidden_state'] | |
pred_values_pool = network_output['value'] | |
value_prefix_pool = network_output['value_prefix'] | |
policy_logits_pool = network_output['policy_logits'] | |
# network output process | |
pred_values_pool = inverse_scalar_transform(pred_values_pool, | |
policy_config.model.support_scale).detach().cpu().numpy() | |
latent_state_roots = latent_state_roots.detach().cpu().numpy() | |
reward_hidden_state_state = ( | |
reward_hidden_state_state[0].detach().cpu().numpy(), reward_hidden_state_state[1].detach().cpu().numpy() | |
) | |
policy_logits_pool = policy_logits_pool.detach().cpu().numpy().tolist() | |
action_mask = [[random.randint(0, 1) for _ in range(action_space_size)] for _ in range(env_nums)] | |
assert len(action_mask) == batch_size | |
assert len(action_mask[0]) == action_space_size | |
action_num = [int(np.array(action_mask[i]).sum()) for i in range(env_nums)] | |
legal_actions_list = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(env_nums)] | |
to_play = [np.random.randint(1, 3) for i in range(env_nums)] | |
assert len(to_play) == batch_size | |
# ============================================ctree=====================================# | |
for i in range(env_nums): | |
assert action_num[i] == len(legal_actions_list[i]) | |
t1 = time.time() | |
roots = MCTSCtree.roots(env_nums, legal_actions_list) | |
build_time.append(time.time() - t1) | |
noises = [ | |
np.random.dirichlet([policy_config.root_dirichlet_alpha] * int(sum(action_mask[j])) | |
).astype(np.float32).tolist() for j in range(env_nums) | |
] | |
t1 = time.time() | |
roots.prepare(policy_config.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play) | |
prepare_time.append(time.time() - t1) | |
t1 = time.time() | |
MCTSCtree(policy_config).search(roots, model, latent_state_roots, reward_hidden_state_state, to_play) | |
search_time.append(time.time() - t1) | |
total_time.append(time.time() - t0) | |
roots_distributions = roots.get_distributions() | |
roots_values = roots.get_values() | |
assert len(roots_values) == env_nums | |
assert len(roots_values) == env_nums | |
for i in range(env_nums): | |
assert len(roots_distributions[i]) == action_num[i] | |
temperature = [1 for _ in range(env_nums)] | |
for i in range(env_nums): | |
distributions = roots_distributions[i] | |
action_index, visit_count_distribution_entropy = select_action( | |
distributions, temperature=temperature[i], deterministic=False | |
) | |
action = np.where(np.array(action_mask[i]) == 1.0)[0][action_index] | |
assert action_index < action_num[i] | |
assert action == legal_actions_list[i][action_index] | |
print('\n action_index={}, legal_action={}, action={}'.format(action_index, legal_actions_list[i], action)) | |
return build_time, prepare_time, search_time, total_time | |
def plot(ctree_time, ptree_time, iters, label): | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib import pyplot | |
plt.style.use('seaborn-whitegrid') | |
palette = pyplot.get_cmap('Set1') | |
font1 = { | |
'family': 'Times New Roman', | |
'weight': 'normal', | |
'size': 18, | |
} | |
plt.figure(figsize=(20, 10)) | |
# ctree | |
color = palette(0) | |
avg = np.mean(ctree_time, axis=0) | |
std = np.std(ctree_time, axis=0) | |
r1 = list(map(lambda x: x[0] - x[1], zip(avg, std))) | |
r2 = list(map(lambda x: x[0] + x[1], zip(avg, std))) | |
plt.plot(iters, avg, color=color, label="ctree", linewidth=3.0) | |
plt.fill_between(iters, r1, r2, color=color, alpha=0.2) | |
# ptree | |
ptree_time = np.array(ptree_time) | |
color = palette(1) | |
avg = np.mean(ptree_time, axis=0) | |
std = np.std(ptree_time, axis=0) | |
r1 = list(map(lambda x: x[0] - x[1], zip(avg, std))) | |
r2 = list(map(lambda x: x[0] + x[1], zip(avg, std))) | |
plt.plot(iters, avg, color=color, label="ptree", linewidth=3.0) | |
plt.fill_between(iters, r1, r2, color=color, alpha=0.2) | |
plt.legend(loc='lower right', prop=font1) | |
plt.title('{}'.format(label)) | |
plt.xlabel('simulations', fontsize=22) | |
plt.ylabel('time', fontsize=22) | |
plt.savefig('{}-time.png'.format(label)) | |
if __name__ == "__main__": | |
# cProfile.run("ctree_func()", filename="ctree_result.out", sort="cumulative") | |
# cProfile.run("ptree_func()", filename="ptree_result.out", sort="cumulative") | |
policy_config = EasyDict( | |
dict( | |
lstm_horizon_len=5, | |
model=dict( | |
support_scale=300, | |
categorical_distribution=True, | |
), | |
action_space_size=100, | |
num_simulations=100, | |
batch_size=512, | |
pb_c_base=1, | |
pb_c_init=1, | |
discount_factor=0.9, | |
root_dirichlet_alpha=0.3, | |
root_noise_weight=0.2, | |
dirichlet_alpha=0.3, | |
exploration_fraction=1, | |
device='cpu', | |
value_delta_max=0.01, | |
) | |
) | |
ACTION_SPCAE_SIZE = [16, 50] | |
BATCH_SIZE = [8, 64, 512] | |
NUM_SIMULATIONS = [i for i in range(20, 200, 20)] | |
# ACTION_SPCAE_SIZE = [50] | |
# BATCH_SIZE = [512] | |
# NUM_SIMULATIONS = [i for i in range(10, 50, 10)] | |
for action_space_size in ACTION_SPCAE_SIZE: | |
for batch_size in BATCH_SIZE: | |
policy_config.batch_size = batch_size | |
policy_config.action_space_size = action_space_size | |
ctree_build_time = [] | |
ctree_prepare_time = [] | |
ctree_search_time = [] | |
ptree_build_time = [] | |
ptree_prepare_time = [] | |
ptree_search_time = [] | |
ctree_total_time = [] | |
ptree_total_time = [] | |
num_simulations = NUM_SIMULATIONS | |
for i in range(3): | |
build_time, prepare_time, search_time, total_time = ctree_func( | |
policy_config, num_simulations=num_simulations | |
) | |
ctree_build_time.append(build_time) | |
ctree_prepare_time.append(prepare_time) | |
ctree_search_time.append(search_time) | |
ctree_total_time.append(total_time) | |
for i in range(3): | |
build_time, prepare_time, search_time, total_time = ptree_func( | |
policy_config, num_simulations=num_simulations | |
) | |
ptree_build_time.append(build_time) | |
ptree_prepare_time.append(prepare_time) | |
ptree_search_time.append(search_time) | |
ptree_total_time.append(total_time) | |
label = 'action_space_size_{}_batch_size_{}'.format(action_space_size, batch_size) | |
plot(ctree_build_time, ptree_build_time, iters=num_simulations, label=label + '_bulid_time') | |
plot(ctree_prepare_time, ptree_prepare_time, iters=num_simulations, label=label + '_prepare_time') | |
plot(ctree_search_time, ptree_search_time, iters=num_simulations, label=label + '_search_time') | |
plot(ctree_total_time, ptree_total_time, iters=num_simulations, label=label + '_total_time') | |