Spaces:
Sleeping
Sleeping
from typing import TYPE_CHECKING, List, Any, Union | |
from easydict import EasyDict | |
import numpy as np | |
import torch | |
import copy | |
from lzero.policy import InverseScalarTransform, to_detach_cpu_numpy | |
from lzero.mcts.ptree import MinMaxStatsList | |
if TYPE_CHECKING: | |
import lzero.mcts.ptree.ptree_sez as ptree | |
# ============================================================== | |
# Sampled EfficientZero | |
# ============================================================== | |
import lzero.mcts.ptree.ptree_sez as tree_sez | |
class SampledEfficientZeroMCTSPtree(object): | |
""" | |
Overview: | |
MCTSPtree for Sampled EfficientZero. The core ``batch_traverse`` and ``batch_backpropagate`` function is implemented in python. | |
Interfaces: | |
__init__, roots, search | |
""" | |
# the default_config for SampledEfficientZeroMCTSPtree. | |
config = dict( | |
# (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree. | |
root_dirichlet_alpha=0.3, | |
# (float) The noise weight at the root node of the search tree. | |
root_noise_weight=0.25, | |
# (int) The base constant used in the PUCT formula for balancing exploration and exploitation during tree search. | |
pb_c_base=19652, | |
# (float) The initialization constant used in the PUCT formula for balancing exploration and exploitation during tree search. | |
pb_c_init=1.25, | |
# (float) The maximum change in value allowed during the backup step of the search tree update. | |
value_delta_max=0.01, | |
) | |
def default_config(cls: type) -> EasyDict: | |
cfg = EasyDict(copy.deepcopy(cls.config)) | |
cfg.cfg_type = cls.__name__ + 'Dict' | |
return cfg | |
def __init__(self, cfg: EasyDict = None) -> None: | |
""" | |
Overview: | |
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key | |
in the default configuration, the user-provided value will override the default configuration. Otherwise, | |
the default configuration will be used. | |
""" | |
default_config = self.default_config() | |
default_config.update(cfg) | |
self._cfg = default_config | |
self.inverse_scalar_transform_handle = InverseScalarTransform( | |
self._cfg.model.support_scale, self._cfg.device, self._cfg.model.categorical_distribution | |
) | |
def roots( | |
cls: int, root_num: int, legal_action_lis: List[Any], action_space_size: int, num_of_sampled_actions: int, | |
continuous_action_space: bool | |
) -> "ptree.Roots": | |
""" | |
Overview: | |
Initialization of CNode with root_num, legal_actions_list, action_space_size, num_of_sampled_actions, continuous_action_space. | |
Arguments: | |
- root_num (:obj:'int'): the number of the current root. | |
- legal_action_lis (:obj:'List'): the vector of the legal action of this root. | |
- action_space_size (:obj:'int'): the size of action space of the current env. | |
- num_of_sampled_actions (:obj:'int'): the number of sampled actions, i.e. K in the Sampled MuZero papers. | |
- continuous_action_space (:obj:'bool'): whether the action space is continous in current env. | |
""" | |
import lzero.mcts.ptree.ptree_sez as ptree | |
return ptree.Roots( | |
root_num, legal_action_lis, action_space_size, num_of_sampled_actions, continuous_action_space | |
) | |
def search( | |
self, | |
roots: Any, | |
model: torch.nn.Module, | |
latent_state_roots: List[Any], | |
reward_hidden_state_roots: List[Any], | |
to_play: Union[int, List[Any]] = -1 | |
) -> None: | |
""" | |
Overview: | |
Do MCTS for the roots (a batch of root nodes in parallel). Parallel in model inference. | |
Use the python ctree. | |
Arguments: | |
- roots (:obj:`Any`): a batch of expanded root nodes | |
- latent_state_roots (:obj:`list`): the hidden states of the roots | |
- reward_hidden_state_roots (:obj:`list`): the value prefix hidden states in LSTM of the roots | |
- to_play (:obj:`list`): the to_play list used in in self-play-mode board games | |
""" | |
with torch.no_grad(): | |
model.eval() | |
# preparation some constant | |
batch_size = roots.num | |
pb_c_base, pb_c_init, discount_factor = self._cfg.pb_c_base, self._cfg.pb_c_init, self._cfg.discount_factor | |
# the data storage of latent states: storing the latent state of all the nodes in one search. | |
latent_state_batch_in_search_path = [latent_state_roots] | |
# the data storage of value prefix hidden states in LSTM | |
reward_hidden_state_c_batch = [reward_hidden_state_roots[0]] | |
reward_hidden_state_h_batch = [reward_hidden_state_roots[1]] | |
# minimax value storage | |
min_max_stats_lst = MinMaxStatsList(batch_size) | |
for simulation_index in range(self._cfg.num_simulations): | |
# In each simulation, we expanded a new node, so in one search, we have ``num_simulations`` num of nodes at most. | |
latent_states = [] | |
hidden_states_c_reward = [] | |
hidden_states_h_reward = [] | |
# prepare a result wrapper to transport results between python and c++ parts | |
results = tree_sez.SearchResults(num=batch_size) | |
# latent_state_index_in_search_path: the first index of leaf node states in latent_state_batch_in_search_path, i.e. is current_latent_state_index in one the search. | |
# latent_state_index_in_batch: the second index of leaf node states in latent_state_batch_in_search_path, i.e. the index in the batch, whose maximum is ``batch_size``. | |
# e.g. the latent state of the leaf node in (x, y) is latent_state_batch_in_search_path[x, y], where x is current_latent_state_index, y is batch_index. | |
# The index of value prefix hidden state of the leaf node are in the same manner. | |
""" | |
MCTS stage 1: Selection | |
Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l. | |
""" | |
latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, virtual_to_play = tree_sez.batch_traverse( | |
roots, pb_c_base, pb_c_init, discount_factor, min_max_stats_lst, results, copy.deepcopy(to_play), | |
self._cfg.model.continuous_action_space | |
) | |
# obtain the search horizon for leaf nodes | |
search_lens = results.search_lens | |
# obtain the latent state for leaf node | |
for ix, iy in zip(latent_state_index_in_search_path, latent_state_index_in_batch): | |
latent_states.append(latent_state_batch_in_search_path[ix][iy]) | |
hidden_states_c_reward.append(reward_hidden_state_c_batch[ix][0][iy]) | |
hidden_states_h_reward.append(reward_hidden_state_h_batch[ix][0][iy]) | |
latent_states = torch.from_numpy(np.asarray(latent_states)).to(self._cfg.device).float() | |
hidden_states_c_reward = torch.from_numpy(np.asarray(hidden_states_c_reward)).to(self._cfg.device | |
).unsqueeze(0) | |
hidden_states_h_reward = torch.from_numpy(np.asarray(hidden_states_h_reward)).to(self._cfg.device | |
).unsqueeze(0) | |
if self._cfg.model.continuous_action_space is True: | |
# continuous action | |
last_actions = torch.from_numpy(np.asarray(last_actions)).to(self._cfg.device).float() | |
else: | |
# discrete action | |
last_actions = torch.from_numpy(np.asarray(last_actions)).to(self._cfg.device).long() | |
""" | |
MCTS stage 2: Expansion | |
At the final time-step l of the simulation, the next_latent_state and reward/value_prefix are computed by the dynamics function. | |
Then we calculate the policy_logits and value for the leaf node (next_latent_state) by the prediction function. (aka. evaluation) | |
MCTS stage 3: Backup | |
At the end of the simulation, the statistics along the trajectory are updated. | |
""" | |
network_output = model.recurrent_inference( | |
latent_states, (hidden_states_c_reward, hidden_states_h_reward), last_actions | |
) | |
[ | |
network_output.latent_state, network_output.policy_logits, network_output.value, | |
network_output.value_prefix | |
] = to_detach_cpu_numpy( | |
[ | |
network_output.latent_state, | |
network_output.policy_logits, | |
self.inverse_scalar_transform_handle(network_output.value), | |
self.inverse_scalar_transform_handle(network_output.value_prefix), | |
] | |
) | |
network_output.reward_hidden_state = ( | |
network_output.reward_hidden_state[0].detach().cpu().numpy(), | |
network_output.reward_hidden_state[1].detach().cpu().numpy() | |
) | |
latent_state_batch_in_search_path.append(network_output.latent_state) | |
reward_latent_state_batch = network_output.reward_hidden_state | |
# tolist() is to be compatible with cpp datatype. | |
value_batch = network_output.value.reshape(-1).tolist() | |
value_prefix_batch = network_output.value_prefix.reshape(-1).tolist() | |
policy_logits_batch = network_output.policy_logits.tolist() | |
# reset the hidden states in LSTM every ``lstm_horizon_len`` steps in one search. | |
# which enable the model only need to predict the value prefix in a range (e.g.: [s0,...,s5]). | |
assert self._cfg.lstm_horizon_len > 0 | |
reset_idx = (np.array(search_lens) % self._cfg.lstm_horizon_len == 0) | |
reward_latent_state_batch[0][:, reset_idx, :] = 0 | |
reward_latent_state_batch[1][:, reset_idx, :] = 0 | |
is_reset_list = reset_idx.astype(np.int32).tolist() | |
reward_hidden_state_c_batch.append(reward_latent_state_batch[0]) | |
reward_hidden_state_h_batch.append(reward_latent_state_batch[1]) | |
# In ``batch_backpropagate()``, we first expand the leaf node using ``the policy_logits`` and | |
# ``reward`` predicted by the model, then perform backpropagation along the search path to update the | |
# statistics. | |
# NOTE: simulation_index + 1 is very important, which is the depth of the current leaf node. | |
current_latent_state_index = simulation_index + 1 | |
tree_sez.batch_backpropagate( | |
current_latent_state_index, discount_factor, value_prefix_batch, value_batch, policy_logits_batch, | |
min_max_stats_lst, results, is_reset_list, virtual_to_play | |
) | |