Spaces:
Sleeping
Sleeping
from typing import TYPE_CHECKING, List, Any, Union | |
from easydict import EasyDict | |
import copy | |
import numpy as np | |
import torch | |
from lzero.mcts.ptree import MinMaxStatsList | |
from lzero.policy import InverseScalarTransform | |
import lzero.mcts.ptree.ptree_stochastic_mz as tree_stochastic_muzero | |
if TYPE_CHECKING: | |
import lzero.mcts.ptree.ptree_stochastic_mz as stochastic_mz_ptree | |
# ============================================================== | |
# Stochastic MuZero | |
# ============================================================== | |
class StochasticMuZeroMCTSPtree(object): | |
""" | |
Overview: | |
MCTSPtree for MuZero. The core ``batch_traverse`` and ``batch_backpropagate`` function is implemented in python. | |
Interfaces: | |
__init__, search | |
""" | |
# the default_config for MuZeroMCTSPtree. | |
config = dict( | |
# (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree. | |
root_dirichlet_alpha=0.3, | |
# (float) The noise weight at the root node of the search tree. | |
root_noise_weight=0.25, | |
# (int) The base constant used in the PUCT formula for balancing exploration and exploitation during tree search. | |
pb_c_base=19652, | |
# (float) The initialization constant used in the PUCT formula for balancing exploration and exploitation during tree search. | |
pb_c_init=1.25, | |
# (float) The maximum change in value allowed during the backup step of the search tree update. | |
value_delta_max=0.01, | |
) | |
def default_config(cls: type) -> EasyDict: | |
cfg = EasyDict(copy.deepcopy(cls.config)) | |
cfg.cfg_type = cls.__name__ + 'Dict' | |
return cfg | |
def __init__(self, cfg: EasyDict = None) -> None: | |
""" | |
Overview: | |
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key | |
in the default configuration, the user-provided value will override the default configuration. Otherwise, | |
the default configuration will be used. | |
""" | |
default_config = self.default_config() | |
default_config.update(cfg) | |
self._cfg = default_config | |
self.inverse_scalar_transform_handle = InverseScalarTransform( | |
self._cfg.model.support_scale, self._cfg.device, self._cfg.model.categorical_distribution | |
) | |
def roots(cls: int, root_num: int, legal_actions: List[Any]) -> "stochastic_mz_ptree.Roots": | |
""" | |
Overview: | |
The initialization of CRoots with root num and legal action lists. | |
Arguments: | |
- root_num: the number of the current root. | |
- legal_action_list: the vector of the legal action of this root. | |
""" | |
import lzero.mcts.ptree.ptree_stochastic_mz as ptree | |
return ptree.Roots(root_num, legal_actions) | |
def search( | |
self, | |
roots: Any, | |
model: torch.nn.Module, | |
latent_state_roots: List[Any], | |
to_play: Union[int, List[Any]] = -1 | |
) -> None: | |
""" | |
Overview: | |
Do MCTS for the roots (a batch of root nodes in parallel). Parallel in model inference. | |
Use the python ctree. | |
Arguments: | |
- roots (:obj:`Any`): a batch of expanded root nodes | |
- latent_state_roots (:obj:`list`): the hidden states of the roots | |
- to_play (:obj:`list`): the to_play list used in two_player mode board games | |
""" | |
with torch.no_grad(): | |
model.eval() | |
# preparation | |
num = roots.num | |
device = self._cfg.device | |
pb_c_base, pb_c_init, discount_factor = self._cfg.pb_c_base, self._cfg.pb_c_init, self._cfg.discount_factor | |
# the data storage of hidden states: storing the hidden states of all the ctree root nodes | |
# latent_state_roots.shape (2, 12, 3, 3) | |
latent_state_batch_in_search_path = [latent_state_roots] | |
# the index of each layer in the ctree | |
current_latent_state_index = 0 | |
# minimax value storage | |
min_max_stats_lst = MinMaxStatsList(num) | |
for simulation_index in range(self._cfg.num_simulations): | |
# In each simulation, we expanded a new node, so in one search, we have ``num_simulations`` num of nodes at most. | |
latent_states = [] | |
# prepare a result wrapper to transport results between python and c++ parts | |
results = tree_stochastic_muzero.SearchResults(num=num) | |
# latent_state_index_in_search_path: The first index of the latent state corresponding to the leaf node in latent_state_batch_in_search_path, that is, the search depth. | |
# latent_state_index_in_batch: The second index of the latent state corresponding to the leaf node in latent_state_batch_in_search_path, i.e. the index in the batch, whose maximum is ``batch_size``. | |
# e.g. the latent state of the leaf node in (x, y) is latent_state_batch_in_search_path[x, y], where x is current_latent_state_index, y is batch_index. | |
""" | |
MCTS stage 1: Selection | |
Each simulation starts from the internal root state s0, and finishes when the simulation reaches a leaf node s_l. | |
""" | |
# leaf_nodes, latent_state_index_in_search_path, latent_state_index_in_batch, last_actions, virtual_to_play = tree_stochastic_muzero.batch_traverse( | |
# roots, pb_c_base, pb_c_init, discount_factor, min_max_stats_lst, results, copy.deepcopy(to_play) | |
# ) | |
results, virtual_to_play = tree_stochastic_muzero.batch_traverse( | |
roots, pb_c_base, pb_c_init, discount_factor, min_max_stats_lst, results, copy.deepcopy(to_play) | |
) | |
leaf_nodes, latent_state_index_in_search_path, latent_state_index_in_batch, last_actions = results.nodes, results.latent_state_index_in_search_path, results.latent_state_index_in_batch, results.last_actions | |
# obtain the states for leaf nodes | |
for ix, iy in zip(latent_state_index_in_search_path, latent_state_index_in_batch): | |
latent_states.append( | |
latent_state_batch_in_search_path[ix][ | |
iy]) # latent_state_batch_in_search_path[ix][iy] shape e.g. (64,4,4) | |
latent_states = torch.from_numpy(np.asarray(latent_states)).to(device).float() | |
# only for discrete action | |
last_actions = torch.from_numpy(np.asarray(last_actions)).to(device).long() | |
""" | |
MCTS stage 2: Expansion | |
At the final time-step l of the simulation, the next_latent_state and reward/value_prefix are computed by the dynamics function. | |
Then we calculate the policy_logits and value for the leaf node (next_latent_state) by the prediction function. (aka. evaluation) | |
MCTS stage 3: Backup | |
At the end of the simulation, the statistics along the trajectory are updated. | |
""" | |
# network_output = model.recurrent_inference(latent_states, last_actions) | |
num = len(leaf_nodes) | |
latent_state_batch = [None] * num | |
value_batch = [None] * num | |
reward_batch = [None] * num | |
policy_logits_batch = [None] * num | |
child_is_chance_batch = [None] * num | |
chance_nodes = [] | |
decision_nodes = [] | |
for i, node in enumerate(leaf_nodes): | |
if node.is_chance: | |
chance_nodes.append(i) | |
else: | |
decision_nodes.append(i) | |
def process_nodes(node_indices, is_chance): | |
# Return early if node_indices is empty | |
if not node_indices: | |
return | |
# Slice and stack latent_states and last_actions based on node_indices | |
latent_states_stack = torch.stack([latent_states[i] for i in node_indices], dim=0) | |
last_actions_stack = torch.stack([last_actions[i] for i in node_indices], dim=0) | |
# Pass the stacked batch through the recurrent_inference function | |
network_output_batch = model.recurrent_inference(latent_states_stack, | |
last_actions_stack, | |
afterstate=not is_chance) | |
# Split the batch output into separate nodes | |
latent_state_splits = torch.split(network_output_batch.latent_state, 1, dim=0) | |
value_splits = torch.split(network_output_batch.value, 1, dim=0) | |
reward_splits = torch.split(network_output_batch.reward, 1, dim=0) | |
policy_logits_splits = torch.split(network_output_batch.policy_logits, 1, dim=0) | |
for i, (latent_state, value, reward, policy_logits) in zip(node_indices, | |
zip(latent_state_splits, value_splits, | |
reward_splits, | |
policy_logits_splits)): | |
if not model.training: | |
value = self.inverse_scalar_transform_handle(value).detach().cpu().numpy() | |
reward = self.inverse_scalar_transform_handle(reward).detach().cpu().numpy() | |
latent_state = latent_state.detach().cpu().numpy() | |
policy_logits = policy_logits.detach().cpu().numpy() | |
latent_state_batch[i] = latent_state | |
value_batch[i] = value.reshape(-1).tolist() | |
reward_batch[i] = reward.reshape(-1).tolist() | |
policy_logits_batch[i] = policy_logits.tolist() | |
child_is_chance_batch[i] = is_chance | |
process_nodes(chance_nodes, True) | |
process_nodes(decision_nodes, False) | |
value_batch_chance = [value_batch[leaf_idx] for leaf_idx in chance_nodes] | |
value_batch_decision = [value_batch[leaf_idx] for leaf_idx in decision_nodes] | |
reward_batch_chance = [reward_batch[leaf_idx] for leaf_idx in chance_nodes] | |
reward_batch_decision = [reward_batch[leaf_idx] for leaf_idx in decision_nodes] | |
policy_logits_batch_chance = [policy_logits_batch[leaf_idx] for leaf_idx in chance_nodes] | |
policy_logits_batch_decision = [policy_logits_batch[leaf_idx] for leaf_idx in decision_nodes] | |
latent_state_batch = np.concatenate(latent_state_batch, axis=0) | |
latent_state_batch_in_search_path.append(latent_state_batch) | |
current_latent_state_index = simulation_index + 1 | |
if len(chance_nodes) > 0: | |
value_batch_chance = np.concatenate(value_batch_chance, axis=0) | |
reward_batch_chance = np.concatenate(reward_batch_chance, axis=0) | |
policy_logits_batch_chance = np.concatenate(policy_logits_batch_chance, axis=0) | |
tree_stochastic_muzero.batch_backpropagate( | |
current_latent_state_index, discount_factor, reward_batch_chance, value_batch_chance, | |
policy_logits_batch_chance, | |
min_max_stats_lst, results, virtual_to_play, child_is_chance_batch, chance_nodes | |
) | |
if len(decision_nodes) > 0: | |
value_batch_decision = np.concatenate(value_batch_decision, axis=0) | |
reward_batch_decision = np.concatenate(reward_batch_decision, axis=0) | |
policy_logits_batch_decision = np.concatenate(policy_logits_batch_decision, axis=0) | |
tree_stochastic_muzero.batch_backpropagate( | |
current_latent_state_index, discount_factor, reward_batch_decision, value_batch_decision, | |
policy_logits_batch_decision, | |
min_max_stats_lst, results, virtual_to_play, child_is_chance_batch, decision_nodes | |
) | |