Spaces:
Sleeping
Sleeping
""" | |
Overview: | |
BTW, users can refer to the unittest of these model templates to learn how to use them. | |
""" | |
from typing import Optional, Tuple | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ding.model import ReparameterizationHead | |
from ding.torch_utils import MLP, ResBlock | |
from ding.utils import MODEL_REGISTRY, SequenceType | |
from .common import RepresentationNetwork | |
# use ModelRegistry to register the model, for more details about ModelRegistry, please refer to DI-engine's document. | |
class AlphaZeroModel(nn.Module): | |
def __init__( | |
self, | |
observation_shape: SequenceType = (12, 96, 96), | |
action_space_size: int = 6, | |
categorical_distribution: bool = False, | |
activation: Optional[nn.Module] = nn.ReLU(inplace=True), | |
representation_network: nn.Module = None, | |
last_linear_layer_init_zero: bool = True, | |
downsample: bool = False, | |
num_res_blocks: int = 1, | |
num_channels: int = 64, | |
value_head_channels: int = 16, | |
policy_head_channels: int = 16, | |
fc_value_layers: SequenceType = [32], | |
fc_policy_layers: SequenceType = [32], | |
value_support_size: int = 601, | |
# ============================================================== | |
# specific sampled related config | |
# ============================================================== | |
continuous_action_space: bool = False, | |
num_of_sampled_actions: int = 6, | |
sigma_type='conditioned', | |
fixed_sigma_value: float = 0.3, | |
bound_type: str = None, | |
norm_type: str = 'BN', | |
discrete_action_encoding_type: str = 'one_hot', | |
): | |
""" | |
Overview: | |
The definition of AlphaZero model, which is a general model for AlphaZero algorithm. | |
Arguments: | |
- observation_shape (:obj:`SequenceType`): Observation space shape, e.g. [C, W, H]=[24, 19, 19] for go. | |
- action_space_size: (:obj:`int`): Action space size, usually an integer number for discrete action space. | |
- categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical \ | |
distribution for value. | |
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \ | |
operation to speedup, e.g. ReLU(inplace=True). | |
- representation_network (:obj:`nn.Module`): The user-defined representation_network. In some complex \ | |
environment, we may need to define a customized representation_network. | |
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializationss for the last layer of \ | |
value/policy mlp, default sets it to True. | |
- downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``, \ | |
in board games, this argument is usually set to False. | |
- num_res_blocks (:obj:`int`): The number of res blocks in AlphaZero model. | |
- num_channels (:obj:`int`): The channels of hidden states. | |
- value_head_channels (:obj:`int`): The channels of value head. | |
- policy_head_channels (:obj:`int`): The channels of policy head. | |
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head). | |
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head). | |
- value_support_size (:obj:`int`): The size of categorical value. | |
""" | |
super(AlphaZeroModel, self).__init__() | |
self.categorical_distribution = categorical_distribution | |
self.observation_shape = observation_shape | |
if self.categorical_distribution: | |
self.value_support_size = value_support_size | |
else: | |
self.value_support_size = 1 | |
self.last_linear_layer_init_zero = last_linear_layer_init_zero | |
self.representation_network = representation_network | |
self.continuous_action_space = continuous_action_space | |
self.action_space_size = action_space_size | |
# The dim of action space. For discrete action space, it's 1. | |
# For continuous action space, it is the dim of action. | |
self.action_space_dim = action_space_size if self.continuous_action_space else 1 | |
assert discrete_action_encoding_type in ['one_hot', 'not_one_hot'], discrete_action_encoding_type | |
self.discrete_action_encoding_type = discrete_action_encoding_type | |
if self.continuous_action_space: | |
self.action_encoding_dim = action_space_size | |
else: | |
if self.discrete_action_encoding_type == 'one_hot': | |
self.action_encoding_dim = action_space_size | |
elif self.discrete_action_encoding_type == 'not_one_hot': | |
self.action_encoding_dim = 1 | |
self.sigma_type = sigma_type | |
self.fixed_sigma_value = fixed_sigma_value | |
self.bound_type = bound_type | |
self.norm_type = norm_type | |
self.num_of_sampled_actions = num_of_sampled_actions | |
# TODO use more adaptive way to get the flatten output size | |
flatten_output_size_for_value_head = ( | |
( | |
value_head_channels * math.ceil(self.observation_shape[1] / 16) * | |
math.ceil(self.observation_shape[2] / 16) | |
) if downsample else (value_head_channels * self.observation_shape[1] * self.observation_shape[2]) | |
) | |
flatten_output_size_for_policy_head = ( | |
( | |
policy_head_channels * math.ceil(self.observation_shape[1] / 16) * | |
math.ceil(self.observation_shape[2] / 16) | |
) if downsample else (policy_head_channels * self.observation_shape[1] * self.observation_shape[2]) | |
) | |
self.prediction_network = PredictionNetwork( | |
action_space_size, | |
self.continuous_action_space, | |
num_res_blocks, | |
num_channels, | |
value_head_channels, | |
policy_head_channels, | |
fc_value_layers, | |
fc_policy_layers, | |
self.value_support_size, | |
flatten_output_size_for_value_head, | |
flatten_output_size_for_policy_head, | |
last_linear_layer_init_zero=self.last_linear_layer_init_zero, | |
activation=activation, | |
sigma_type=self.sigma_type, | |
fixed_sigma_value=self.fixed_sigma_value, | |
bound_type=self.bound_type, | |
norm_type=self.norm_type, | |
) | |
if self.representation_network is None: | |
self.representation_network = RepresentationNetwork( | |
self.observation_shape, | |
num_res_blocks, | |
num_channels, | |
downsample, | |
activation=activation, | |
) | |
else: | |
self.representation_network = self.representation_network | |
def forward(self, state_batch: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Overview: | |
The common computation graph of AlphaZero model. | |
Arguments: | |
- state_batch (:obj:`torch.Tensor`): The input state data, e.g. 2D image with the shape of [C, H, W]. | |
Returns: | |
- logit (:obj:`torch.Tensor`): The output logit to select discrete action. | |
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. | |
Shapes: | |
- state_batch (:obj:`torch.Tensor`): :math:`(B, C, H, W)`, where B is batch size, C is channel, H is \ | |
height, W is width. | |
- logit (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size, N is action space size. | |
- value (:obj:`torch.Tensor`): :math:`(B, 1)`, where B is batch size. | |
""" | |
encoded_state = self.representation_network(state_batch) | |
logit, value = self.prediction_network(encoded_state) | |
return logit, value | |
def compute_policy_value(self, state_batch: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Overview: | |
The computation graph of AlphaZero model to calculate action selection probability and value. | |
Arguments: | |
- state_batch (:obj:`torch.Tensor`): The input state data, e.g. 2D image with the shape of [C, H, W]. | |
Returns: | |
- prob (:obj:`torch.Tensor`): The output probability to select discrete action. | |
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. | |
Shapes: | |
- state_batch (:obj:`torch.Tensor`): :math:`(B, C, H, W)`, where B is batch size, C is channel, H is \ | |
height, W is width. | |
- prob (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size, N is action space size. | |
- value (:obj:`torch.Tensor`): :math:`(B, 1)`, where B is batch size. | |
""" | |
logit, value = self.forward(state_batch) | |
prob = torch.nn.functional.softmax(logit, dim=-1) | |
return prob, value | |
def compute_logp_value(self, state_batch: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Overview: | |
The computation graph of AlphaZero model to calculate log probability and value. | |
Arguments: | |
- state_batch (:obj:`torch.Tensor`): The input state data, e.g. 2D image with the shape of [C, H, W]. | |
Returns: | |
- log_prob (:obj:`torch.Tensor`): The output log probability to select discrete action. | |
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. | |
Shapes: | |
- state_batch (:obj:`torch.Tensor`): :math:`(B, C, H, W)`, where B is batch size, C is channel, H is \ | |
height, W is width. | |
- log_prob (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size, N is action space size. | |
- value (:obj:`torch.Tensor`): :math:`(B, 1)`, where B is batch size. | |
""" | |
logit, value = self.forward(state_batch) | |
# use log_softmax to calculate log probability | |
log_prob = F.log_softmax(logit, dim=-1) | |
return log_prob, value | |
class PredictionNetwork(nn.Module): | |
def __init__( | |
self, | |
action_space_size: int, | |
continuous_action_space: bool, | |
num_res_blocks: int, | |
num_channels: int, | |
value_head_channels: int, | |
policy_head_channels: int, | |
fc_value_layers: SequenceType, | |
fc_policy_layers: SequenceType, | |
output_support_size: int, | |
flatten_output_size_for_value_head: int, | |
flatten_output_size_for_policy_head: int, | |
last_linear_layer_init_zero: bool = True, | |
activation: Optional[nn.Module] = nn.ReLU(inplace=True), | |
# ============================================================== | |
# specific sampled related config | |
# ============================================================== | |
sigma_type='conditioned', | |
fixed_sigma_value: float = 0.3, | |
bound_type: str = None, | |
norm_type: str = 'BN', | |
) -> None: | |
""" | |
Overview: | |
Prediction network. Predict the value and policy given the hidden state. | |
Arguments: | |
- action_space_size: (:obj:`int`): Action space size, usually an integer number for discrete action space. | |
- num_res_blocks (:obj:`int`): The number of res blocks in AlphaZero model. | |
- in_channels (:obj:`int`): The channels of input, if None, then in_channels = num_channels. | |
- num_channels (:obj:`int`): The channels of hidden states. | |
- value_head_channels (:obj:`int`): The channels of value head. | |
- policy_head_channels (:obj:`int`): The channels of policy head. | |
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head). | |
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head). | |
- output_support_size (:obj:`int`): The size of categorical value output. | |
- flatten_output_size_for_value_head (:obj:`int`): The size of flatten hidden states, i.e. the input size \ | |
of the value head. | |
- flatten_output_size_for_policy_head (:obj:`int`): The size of flatten hidden states, i.e. the input size \ | |
of the policy head. | |
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of \ | |
value/policy mlp, default sets it to True. | |
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \ | |
operation to speedup, e.g. ReLU(inplace=True). | |
""" | |
super().__init__() | |
self.continuous_action_space = continuous_action_space | |
self.flatten_output_size_for_value_head = flatten_output_size_for_value_head | |
self.flatten_output_size_for_policy_head = flatten_output_size_for_policy_head | |
self.norm_type = norm_type | |
self.sigma_type = sigma_type | |
self.fixed_sigma_value = fixed_sigma_value | |
self.bound_type = bound_type | |
self.activation = activation | |
self.resblocks = nn.ModuleList( | |
[ | |
ResBlock(in_channels=num_channels, activation=activation, norm_type='BN', res_type='basic', bias=False) | |
for _ in range(num_res_blocks) | |
] | |
) | |
self.conv1x1_value = nn.Conv2d(num_channels, value_head_channels, 1) | |
self.conv1x1_policy = nn.Conv2d(num_channels, policy_head_channels, 1) | |
self.norm_value = nn.BatchNorm2d(value_head_channels) | |
self.norm_policy = nn.BatchNorm2d(policy_head_channels) | |
self.flatten_output_size_for_value_head = flatten_output_size_for_value_head | |
self.flatten_output_size_for_policy_head = flatten_output_size_for_policy_head | |
self.fc_value_head = MLP( | |
in_channels=self.flatten_output_size_for_value_head, | |
hidden_channels=fc_value_layers[0], | |
out_channels=output_support_size, | |
layer_num=len(fc_value_layers) + 1, | |
activation=activation, | |
norm_type='LN', | |
output_activation=False, | |
output_norm=False, | |
last_linear_layer_init_zero=last_linear_layer_init_zero | |
) | |
# sampled related core code | |
if self.continuous_action_space: | |
self.fc_policy_head = ReparameterizationHead( | |
input_size=self.flatten_output_size_for_policy_head, | |
output_size=action_space_size, | |
layer_num=len(fc_policy_layers) + 1, | |
sigma_type=self.sigma_type, | |
fixed_sigma_value=self.fixed_sigma_value, | |
activation=nn.ReLU(), | |
norm_type=None, | |
bound_type=self.bound_type | |
) | |
else: | |
self.fc_policy_head = MLP( | |
in_channels=self.flatten_output_size_for_policy_head, | |
hidden_channels=fc_policy_layers[0], | |
out_channels=action_space_size, | |
layer_num=len(fc_policy_layers) + 1, | |
activation=activation, | |
norm_type='LN', | |
output_activation=False, | |
output_norm=False, | |
last_linear_layer_init_zero=last_linear_layer_init_zero | |
) | |
self.activation = activation | |
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Overview: | |
Use the hidden state to predict the value and policy. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The hidden state. | |
Returns: | |
- outputs (:obj:`Tuple[torch.Tensor, torch.Tensor]`): The value and policy. | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, C, H, W)`, where B is batch size, C is channel, H is \ | |
the height of the encoding state, W is width of the encoding state. | |
- logit (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size, N is action space size. | |
- value (:obj:`torch.Tensor`): :math:`(B, 1)`, where B is batch size. | |
""" | |
for block in self.resblocks: | |
x = block(x) | |
value = self.conv1x1_value(x) | |
value = self.norm_value(value) | |
value = self.activation(value) | |
policy = self.conv1x1_policy(x) | |
policy = self.norm_policy(policy) | |
policy = self.activation(policy) | |
value = value.reshape(-1, self.flatten_output_size_for_value_head) | |
policy = policy.reshape(-1, self.flatten_output_size_for_policy_head) | |
value = self.fc_value_head(value) | |
# sampled related core code | |
policy = self.fc_policy_head(policy) | |
if self.continuous_action_space: | |
policy = torch.cat([policy['mu'], policy['sigma']], dim=-1) | |
return policy, value | |