Spaces:
Sleeping
Sleeping
""" | |
Overview: | |
In this Python file, we provide a collection of reusable model templates designed to streamline the development | |
process for various custom algorithms. By utilizing these pre-built model templates, users can quickly adapt and | |
customize their custom algorithms, ensuring efficient and effective development. | |
BTW, users can refer to the unittest of these model templates to learn how to use them. | |
""" | |
import math | |
from typing import Optional, Tuple | |
from dataclasses import dataclass | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from ding.torch_utils import MLP, ResBlock | |
from ding.utils import SequenceType | |
# use dataclass to make the output of network more convenient to use | |
class EZNetworkOutput: | |
# output format of the EfficientZero model | |
value: torch.Tensor | |
value_prefix: torch.Tensor | |
policy_logits: torch.Tensor | |
latent_state: torch.Tensor | |
reward_hidden_state: Tuple[torch.Tensor] | |
class MZNetworkOutput: | |
# output format of the MuZero model | |
value: torch.Tensor | |
reward: torch.Tensor | |
policy_logits: torch.Tensor | |
latent_state: torch.Tensor | |
class DownSample(nn.Module): | |
def __init__(self, observation_shape: SequenceType, out_channels: int, activation: nn.Module = nn.ReLU(inplace=True), | |
norm_type: Optional[str] = 'BN', | |
) -> None: | |
""" | |
Overview: | |
Define downSample convolution network. Encode the observation into hidden state. | |
This network is often used in video games like Atari. In board games like go and chess, | |
we don't need this module. | |
Arguments: | |
- observation_shape (:obj:`SequenceType`): The shape of observation space, e.g. [C, W, H]=[12, 96, 96] | |
for video games like atari, RGB 3 channel times stack 4 frames. | |
- out_channels (:obj:`int`): The output channels of output hidden state. | |
- activation (:obj:`nn.Module`): The activation function used in network, defaults to nn.ReLU(). \ | |
Use the inplace operation to speed up. | |
- norm_type (:obj:`Optional[str]`): The normalization type used in network, defaults to 'BN'. | |
""" | |
super().__init__() | |
assert norm_type in ['BN', 'LN'], "norm_type must in ['BN', 'LN']" | |
self.conv1 = nn.Conv2d( | |
observation_shape[0], | |
out_channels // 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
bias=False, # disable bias for better convergence | |
) | |
if norm_type == 'BN': | |
self.norm1 = nn.BatchNorm2d(out_channels // 2) | |
elif norm_type == 'LN': | |
self.norm1 = nn.LayerNorm([out_channels // 2, observation_shape[-2] // 2, observation_shape[-1] // 2]) | |
self.resblocks1 = nn.ModuleList( | |
[ | |
ResBlock( | |
in_channels=out_channels // 2, | |
activation=activation, | |
norm_type='BN', | |
res_type='basic', | |
bias=False | |
) for _ in range(1) | |
] | |
) | |
self.conv2 = nn.Conv2d( | |
out_channels // 2, | |
out_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
bias=False, | |
) | |
self.downsample_block = ResBlock( | |
in_channels=out_channels // 2, | |
out_channels=out_channels, | |
activation=activation, | |
norm_type='BN', | |
res_type='downsample', | |
bias=False | |
) | |
self.resblocks2 = nn.ModuleList( | |
[ | |
ResBlock( | |
in_channels=out_channels, activation=activation, norm_type='BN', res_type='basic', bias=False | |
) for _ in range(1) | |
] | |
) | |
self.pooling1 = nn.AvgPool2d(kernel_size=3, stride=2, padding=1) | |
self.resblocks3 = nn.ModuleList( | |
[ | |
ResBlock( | |
in_channels=out_channels, activation=activation, norm_type='BN', res_type='basic', bias=False | |
) for _ in range(1) | |
] | |
) | |
self.pooling2 = nn.AvgPool2d(kernel_size=3, stride=2, padding=1) | |
self.activation = activation | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, C_in, W, H)`, where B is batch size, C_in is channel, W is width, \ | |
H is height. | |
- output (:obj:`torch.Tensor`): :math:`(B, C_out, W_, H_)`, where B is batch size, C_out is channel, W_ is \ | |
output width, H_ is output height. | |
""" | |
x = self.conv1(x) | |
x = self.norm1(x) | |
x = self.activation(x) | |
for block in self.resblocks1: | |
x = block(x) | |
x = self.downsample_block(x) | |
for block in self.resblocks2: | |
x = block(x) | |
x = self.pooling1(x) | |
for block in self.resblocks3: | |
x = block(x) | |
output = self.pooling2(x) | |
return output | |
class RepresentationNetwork(nn.Module): | |
def __init__( | |
self, | |
observation_shape: SequenceType = (12, 96, 96), | |
num_res_blocks: int = 1, | |
num_channels: int = 64, | |
downsample: bool = True, | |
activation: nn.Module = nn.ReLU(inplace=True), | |
norm_type: str = 'BN', | |
) -> None: | |
""" | |
Overview: | |
Representation network used in MuZero and derived algorithms. Encode the 2D image obs into hidden state. | |
Arguments: | |
- observation_shape (:obj:`SequenceType`): The shape of observation space, e.g. [C, W, H]=[12, 96, 96] | |
for video games like atari, RGB 3 channel times stack 4 frames. | |
- num_res_blocks (:obj:`int`): The number of residual blocks. | |
- num_channels (:obj:`int`): The channel of output hidden state. | |
- downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``, \ | |
defaults to True. This option is often used in video games like Atari. In board games like go, \ | |
we don't need this module. | |
- activation (:obj:`nn.Module`): The activation function used in network, defaults to nn.ReLU(). \ | |
Use the inplace operation to speed up. | |
- norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'. | |
""" | |
super().__init__() | |
assert norm_type in ['BN', 'LN'], "norm_type must in ['BN', 'LN']" | |
self.downsample = downsample | |
if self.downsample: | |
self.downsample_net = DownSample( | |
observation_shape, | |
num_channels, | |
activation=activation, | |
norm_type=norm_type, | |
) | |
else: | |
self.conv = nn.Conv2d(observation_shape[0], num_channels, kernel_size=3, stride=1, padding=1, bias=False) | |
if norm_type == 'BN': | |
self.norm = nn.BatchNorm2d(num_channels) | |
elif norm_type == 'LN': | |
if downsample: | |
self.norm = nn.LayerNorm([num_channels, math.ceil(observation_shape[-2] / 16), math.ceil(observation_shape[-1] / 16)]) | |
else: | |
self.norm = nn.LayerNorm([num_channels, observation_shape[-2], observation_shape[-1]]) | |
self.resblocks = nn.ModuleList( | |
[ | |
ResBlock( | |
in_channels=num_channels, activation=activation, norm_type='BN', res_type='basic', bias=False | |
) for _ in range(num_res_blocks) | |
] | |
) | |
self.activation = activation | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, C_in, W, H)`, where B is batch size, C_in is channel, W is width, \ | |
H is height. | |
- output (:obj:`torch.Tensor`): :math:`(B, C_out, W_, H_)`, where B is batch size, C_out is channel, W_ is \ | |
output width, H_ is output height. | |
""" | |
if self.downsample: | |
x = self.downsample_net(x) | |
else: | |
x = self.conv(x) | |
x = self.norm(x) | |
x = self.activation(x) | |
for block in self.resblocks: | |
x = block(x) | |
return x | |
def get_param_mean(self) -> float: | |
""" | |
Overview: | |
Get the mean of parameters in the network for debug and visualization. | |
Returns: | |
- mean (:obj:`float`): The mean of parameters in the network. | |
""" | |
mean = [] | |
for name, param in self.named_parameters(): | |
mean += np.abs(param.detach().cpu().numpy().reshape(-1)).tolist() | |
mean = sum(mean) / len(mean) | |
return mean | |
class RepresentationNetworkMLP(nn.Module): | |
def __init__( | |
self, | |
observation_shape: int, | |
hidden_channels: int = 64, | |
layer_num: int = 2, | |
activation: Optional[nn.Module] = nn.ReLU(inplace=True), | |
last_linear_layer_init_zero: bool = True, | |
norm_type: Optional[str] = 'BN', | |
) -> torch.Tensor: | |
""" | |
Overview: | |
Representation network used in MuZero and derived algorithms. Encode the vector obs into latent state \ | |
with Multi-Layer Perceptron (MLP). | |
Arguments: | |
- observation_shape (:obj:`int`): The shape of vector observation space, e.g. N = 10. | |
- num_res_blocks (:obj:`int`): The number of residual blocks. | |
- hidden_channels (:obj:`int`): The channel of output hidden state. | |
- downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``, \ | |
defaults to True. This option is often used in video games like Atari. In board games like go, \ | |
we don't need this module. | |
- activation (:obj:`nn.Module`): The activation function used in network, defaults to nn.ReLU(). \ | |
Use the inplace operation to speed up. | |
- last_linear_layer_init_zero (:obj:`bool`): Whether to initialize the last linear layer with zeros, \ | |
which can provide stable zero outputs in the beginning, defaults to True. | |
- norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'. | |
""" | |
super().__init__() | |
self.fc_representation = MLP( | |
in_channels=observation_shape, | |
hidden_channels=hidden_channels, | |
out_channels=hidden_channels, | |
layer_num=layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
# don't use activation and norm in the last layer of representation network is important for convergence. | |
output_activation=False, | |
output_norm=False, | |
# last_linear_layer_init_zero=True is beneficial for convergence speed. | |
last_linear_layer_init_zero=True, | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size, N is the length of vector observation. | |
- output (:obj:`torch.Tensor`): :math:`(B, hidden_channels)`, where B is batch size. | |
""" | |
return self.fc_representation(x) | |
class PredictionNetwork(nn.Module): | |
def __init__( | |
self, | |
observation_shape: SequenceType, | |
action_space_size: int, | |
num_res_blocks: int, | |
num_channels: int, | |
value_head_channels: int, | |
policy_head_channels: int, | |
fc_value_layers: int, | |
fc_policy_layers: int, | |
output_support_size: int, | |
flatten_output_size_for_value_head: int, | |
flatten_output_size_for_policy_head: int, | |
downsample: bool = False, | |
last_linear_layer_init_zero: bool = True, | |
activation: nn.Module = nn.ReLU(inplace=True), | |
norm_type: Optional[str] = 'BN', | |
) -> None: | |
""" | |
Overview: | |
The definition of policy and value prediction network, which is used to predict value and policy by the | |
given latent state. | |
Arguments: | |
- observation_shape (:obj:`SequenceType`): The shape of observation space, e.g. (C, H, W) for image. | |
- action_space_size: (:obj:`int`): Action space size, usually an integer number for discrete action space. | |
- num_res_blocks (:obj:`int`): The number of res blocks in AlphaZero model. | |
- num_channels (:obj:`int`): The channels of hidden states. | |
- value_head_channels (:obj:`int`): The channels of value head. | |
- policy_head_channels (:obj:`int`): The channels of policy head. | |
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head). | |
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head). | |
- output_support_size (:obj:`int`): The size of categorical value output. | |
- self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks \ | |
- flatten_output_size_for_value_head (:obj:`int`): The size of flatten hidden states, i.e. the input size \ | |
of the value head. | |
- flatten_output_size_for_policy_head (:obj:`int`): The size of flatten hidden states, i.e. the input size \ | |
of the policy head. | |
- downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``. | |
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of \ | |
dynamics/prediction mlp, default sets it to True. | |
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \ | |
operation to speedup, e.g. ReLU(inplace=True). | |
- norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'. | |
""" | |
super(PredictionNetwork, self).__init__() | |
assert norm_type in ['BN', 'LN'], "norm_type must in ['BN', 'LN']" | |
self.resblocks = nn.ModuleList( | |
[ | |
ResBlock( | |
in_channels=num_channels, activation=activation, norm_type='BN', res_type='basic', bias=False | |
) for _ in range(num_res_blocks) | |
] | |
) | |
self.conv1x1_value = nn.Conv2d(num_channels, value_head_channels, 1) | |
self.conv1x1_policy = nn.Conv2d(num_channels, policy_head_channels, 1) | |
if norm_type == 'BN': | |
self.norm_value = nn.BatchNorm2d(value_head_channels) | |
self.norm_policy = nn.BatchNorm2d(policy_head_channels) | |
elif norm_type == 'LN': | |
if downsample: | |
self.norm_value = nn.LayerNorm([value_head_channels, math.ceil(observation_shape[-2] / 16), math.ceil(observation_shape[-1] / 16)]) | |
self.norm_policy = nn.LayerNorm([policy_head_channels, math.ceil(observation_shape[-2] / 16), math.ceil(observation_shape[-1] / 16)]) | |
else: | |
self.norm_value = nn.LayerNorm([value_head_channels, observation_shape[-2], observation_shape[-1]]) | |
self.norm_policy = nn.LayerNorm([policy_head_channels, observation_shape[-2], observation_shape[-1]]) | |
self.flatten_output_size_for_value_head = flatten_output_size_for_value_head | |
self.flatten_output_size_for_policy_head = flatten_output_size_for_policy_head | |
self.activation = activation | |
self.fc_value = MLP( | |
in_channels=self.flatten_output_size_for_value_head, | |
hidden_channels=fc_value_layers[0], | |
out_channels=output_support_size, | |
layer_num=len(fc_value_layers) + 1, | |
activation=self.activation, | |
norm_type=norm_type, | |
output_activation=False, | |
output_norm=False, | |
# last_linear_layer_init_zero=True is beneficial for convergence speed. | |
last_linear_layer_init_zero=last_linear_layer_init_zero | |
) | |
self.fc_policy = MLP( | |
in_channels=self.flatten_output_size_for_policy_head, | |
hidden_channels=fc_policy_layers[0], | |
out_channels=action_space_size, | |
layer_num=len(fc_policy_layers) + 1, | |
activation=self.activation, | |
norm_type=norm_type, | |
output_activation=False, | |
output_norm=False, | |
# last_linear_layer_init_zero=True is beneficial for convergence speed. | |
last_linear_layer_init_zero=last_linear_layer_init_zero | |
) | |
def forward(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Overview: | |
Forward computation of the prediction network. | |
Arguments: | |
- latent_state (:obj:`torch.Tensor`): input tensor with shape (B, latent_state_dim). | |
Returns: | |
- policy (:obj:`torch.Tensor`): policy tensor with shape (B, action_space_size). | |
- value (:obj:`torch.Tensor`): value tensor with shape (B, output_support_size). | |
""" | |
for res_block in self.resblocks: | |
latent_state = res_block(latent_state) | |
value = self.conv1x1_value(latent_state) | |
value = self.norm_value(value) | |
value = self.activation(value) | |
policy = self.conv1x1_policy(latent_state) | |
policy = self.norm_policy(policy) | |
policy = self.activation(policy) | |
value = value.reshape(-1, self.flatten_output_size_for_value_head) | |
policy = policy.reshape(-1, self.flatten_output_size_for_policy_head) | |
value = self.fc_value(value) | |
policy = self.fc_policy(policy) | |
return policy, value | |
class PredictionNetworkMLP(nn.Module): | |
def __init__( | |
self, | |
action_space_size, | |
num_channels, | |
common_layer_num: int = 2, | |
fc_value_layers: SequenceType = [32], | |
fc_policy_layers: SequenceType = [32], | |
output_support_size: int = 601, | |
last_linear_layer_init_zero: bool = True, | |
activation: Optional[nn.Module] = nn.ReLU(inplace=True), | |
norm_type: Optional[str] = 'BN', | |
): | |
""" | |
Overview: | |
The definition of policy and value prediction network with Multi-Layer Perceptron (MLP), | |
which is used to predict value and policy by the given latent state. | |
Arguments: | |
- action_space_size: (:obj:`int`): Action space size, usually an integer number. For discrete action \ | |
space, it is the number of discrete actions. | |
- num_channels (:obj:`int`): The channels of latent states. | |
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head). | |
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head). | |
- output_support_size (:obj:`int`): The size of categorical value output. | |
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of \ | |
dynamics/prediction mlp, default sets it to True. | |
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \ | |
operation to speedup, e.g. ReLU(inplace=True). | |
- norm_type (:obj:`str`): The type of normalization in networks. defaults to 'BN'. | |
""" | |
super().__init__() | |
self.num_channels = num_channels | |
# ******* common backbone ****** | |
self.fc_prediction_common = MLP( | |
in_channels=self.num_channels, | |
hidden_channels=self.num_channels, | |
out_channels=self.num_channels, | |
layer_num=common_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
output_activation=True, | |
output_norm=True, | |
# last_linear_layer_init_zero=False is important for convergence | |
last_linear_layer_init_zero=False, | |
) | |
# ******* value and policy head ****** | |
self.fc_value_head = MLP( | |
in_channels=self.num_channels, | |
hidden_channels=fc_value_layers[0], | |
out_channels=output_support_size, | |
layer_num=len(fc_value_layers) + 1, | |
activation=activation, | |
norm_type=norm_type, | |
output_activation=False, | |
output_norm=False, | |
# last_linear_layer_init_zero=True is beneficial for convergence speed. | |
last_linear_layer_init_zero=last_linear_layer_init_zero | |
) | |
self.fc_policy_head = MLP( | |
in_channels=self.num_channels, | |
hidden_channels=fc_policy_layers[0], | |
out_channels=action_space_size, | |
layer_num=len(fc_policy_layers) + 1, | |
activation=activation, | |
norm_type=norm_type, | |
output_activation=False, | |
output_norm=False, | |
# last_linear_layer_init_zero=True is beneficial for convergence speed. | |
last_linear_layer_init_zero=last_linear_layer_init_zero | |
) | |
def forward(self, latent_state: torch.Tensor): | |
""" | |
Overview: | |
Forward computation of the prediction network. | |
Arguments: | |
- latent_state (:obj:`torch.Tensor`): input tensor with shape (B, latent_state_dim). | |
Returns: | |
- policy (:obj:`torch.Tensor`): policy tensor with shape (B, action_space_size). | |
- value (:obj:`torch.Tensor`): value tensor with shape (B, output_support_size). | |
""" | |
x_prediction_common = self.fc_prediction_common(latent_state) | |
value = self.fc_value_head(x_prediction_common) | |
policy = self.fc_policy_head(x_prediction_common) | |
return policy, value | |