Spaces:
Sleeping
Sleeping
import math | |
from typing import Optional, Tuple | |
import torch | |
import torch.nn as nn | |
from ding.model.common import ReparameterizationHead | |
from ding.torch_utils import MLP, ResBlock | |
from ding.utils import MODEL_REGISTRY, SequenceType | |
from .common import EZNetworkOutput, RepresentationNetwork | |
from .efficientzero_model import DynamicsNetwork | |
from .utils import renormalize, get_params_mean | |
# use ModelRegistry to register the model, for more details about ModelRegistry, please refer to DI-engine's document. | |
class SampledEfficientZeroModel(nn.Module): | |
def __init__( | |
self, | |
observation_shape: SequenceType = (12, 96, 96), | |
action_space_size: int = 6, | |
num_res_blocks: int = 1, | |
num_channels: int = 64, | |
lstm_hidden_size: int = 512, | |
reward_head_channels: int = 16, | |
value_head_channels: int = 16, | |
policy_head_channels: int = 16, | |
fc_reward_layers: SequenceType = [32], | |
fc_value_layers: SequenceType = [32], | |
fc_policy_layers: SequenceType = [32], | |
reward_support_size: int = 601, | |
value_support_size: int = 601, | |
proj_hid: int = 1024, | |
proj_out: int = 1024, | |
pred_hid: int = 512, | |
pred_out: int = 1024, | |
self_supervised_learning_loss: bool = True, | |
categorical_distribution: bool = True, | |
activation: Optional[nn.Module] = nn.ReLU(inplace=True), | |
last_linear_layer_init_zero: bool = True, | |
state_norm: bool = False, | |
downsample: bool = False, | |
# ============================================================== | |
# specific sampled related config | |
# ============================================================== | |
continuous_action_space: bool = False, | |
num_of_sampled_actions: int = 6, | |
sigma_type='conditioned', | |
fixed_sigma_value: float = 0.3, | |
bound_type: str = None, | |
norm_type: str = 'BN', | |
discrete_action_encoding_type: str = 'one_hot', | |
*args, | |
**kwargs, | |
): | |
""" | |
Overview: | |
The definition of the network model of Sampled EfficientZero, which is a generalization version for 2D image obs. | |
The networks are mainly built on convolution residual blocks and fully connected layers. | |
Sampled EfficientZero model consists of a representation network, a dynamics network and a prediction network. | |
The representation network is an MLP network which maps the raw observation to a latent state. | |
The dynamics network is an MLP+LSTM network which predicts the next latent state, reward_hidden_state and value_prefix given the current latent state and action. | |
The prediction network is an MLP network which predicts the value and policy given the current latent state. | |
Arguments: | |
- observation_shape (:obj:`SequenceType`): Observation space shape, e.g. [C, W, H]=[12, 96, 96] for Atari. | |
- action_space_size: (:obj:`int`): Action space size, which is an integer number. For discrete action space, it is the num of discrete actions, \ | |
e.g. 4 for Lunarlander. For continuous action space, it is the dimension of the continuous action, e.g. 4 for bipedalwalker. | |
- num_res_blocks (:obj:`int`): The number of res blocks in Sampled EfficientZero model. | |
- num_channels (:obj:`int`): The channels of hidden states. | |
- lstm_hidden_size (:obj:`int`): dim of lstm hidden state in dynamics network. | |
- reward_head_channels (:obj:`int`): The channels of reward head. | |
- value_head_channels (:obj:`int`): The channels of value head. | |
- policy_head_channels (:obj:`int`): The channels of policy head. | |
- fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head). | |
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head). | |
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head). | |
- reward_support_size (:obj:`int`): The size of categorical reward output | |
- value_support_size (:obj:`int`): The size of categorical value output. | |
- proj_hid (:obj:`int`): The size of projection hidden layer. | |
- proj_out (:obj:`int`): The size of projection output layer. | |
- pred_hid (:obj:`int`): The size of prediction hidden layer. | |
- pred_out (:obj:`int`): The size of prediction output layer. | |
- self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks in model, default set it to False. | |
- categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical distribution \ | |
for value, reward/value_prefix. | |
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \ | |
operation to speedup, e.g. ReLU(inplace=True). | |
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializations for the last layer of \ | |
value/policy mlp, default sets it to True. | |
- state_norm (:obj:`bool`): Whether to use normalization for hidden states, default sets it to True. | |
- downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``, \ | |
defaults to True. This option is often used in video games like Atari. In board games like go, \ | |
we don't need this module. | |
# ============================================================== | |
# specific sampled related config | |
# ============================================================== | |
- continuous_action_space (:obj:`bool`): The type of action space. default set it to False. | |
- num_of_sampled_actions (:obj:`int`): the number of sampled actions, i.e. the K in original Sampled MuZero paper. | |
# Please see ``ReparameterizationHead`` in ``ding.model.common.head`` for more details about the following arguments. | |
- sigma_type (:obj:`str`): the type of sigma in policy head of prediction network, options={'conditioned', 'fixed'}. | |
- fixed_sigma_value (:obj:`float`): the fixed sigma value in policy head of prediction network, | |
- bound_type (:obj:`str`): The type of bound in networks, default set it to None. | |
- norm_type (:obj:`str`): The type of normalization in networks, default sets it to 'BN'. | |
- discrete_action_encoding_type (:obj:`str`): The type of encoding for discrete action. default sets it to 'one_hot'. options = {'one_hot', 'not_one_hot'} | |
""" | |
super(SampledEfficientZeroModel, self).__init__() | |
if isinstance(observation_shape, int) or len(observation_shape) == 1: | |
# for vector obs input, e.g. classical control and box2d environments | |
# to be compatible with LightZero model/policy, transform to shape: [C, W, H] | |
observation_shape = [1, observation_shape, 1] | |
if not categorical_distribution: | |
self.reward_support_size = 1 | |
self.value_support_size = 1 | |
else: | |
self.reward_support_size = reward_support_size | |
self.value_support_size = value_support_size | |
self.continuous_action_space = continuous_action_space | |
self.action_space_size = action_space_size | |
# The dim of action space. For discrete action space, it's 1. | |
# For continuous action space, it is the dim of action. | |
self.action_space_dim = action_space_size if self.continuous_action_space else 1 | |
assert discrete_action_encoding_type in ['one_hot', 'not_one_hot'], discrete_action_encoding_type | |
self.discrete_action_encoding_type = discrete_action_encoding_type | |
if self.continuous_action_space: | |
self.action_encoding_dim = action_space_size | |
else: | |
if self.discrete_action_encoding_type == 'one_hot': | |
self.action_encoding_dim = action_space_size | |
elif self.discrete_action_encoding_type == 'not_one_hot': | |
self.action_encoding_dim = 1 | |
self.lstm_hidden_size = lstm_hidden_size | |
self.proj_hid = proj_hid | |
self.proj_out = proj_out | |
self.pred_hid = pred_hid | |
self.pred_out = pred_out | |
self.last_linear_layer_init_zero = last_linear_layer_init_zero | |
self.state_norm = state_norm | |
self.downsample = downsample | |
self.self_supervised_learning_loss = self_supervised_learning_loss | |
self.sigma_type = sigma_type | |
self.fixed_sigma_value = fixed_sigma_value | |
self.bound_type = bound_type | |
self.norm_type = norm_type | |
self.num_of_sampled_actions = num_of_sampled_actions | |
flatten_output_size_for_reward_head = ( | |
(reward_head_channels * math.ceil(observation_shape[1] / 16) * | |
math.ceil(observation_shape[2] / 16)) if downsample else | |
(reward_head_channels * observation_shape[1] * observation_shape[2]) | |
) | |
flatten_output_size_for_value_head = ( | |
(value_head_channels * math.ceil(observation_shape[1] / 16) * | |
math.ceil(observation_shape[2] / 16)) if downsample else | |
(value_head_channels * observation_shape[1] * observation_shape[2]) | |
) | |
flatten_output_size_for_policy_head = ( | |
(policy_head_channels * math.ceil(observation_shape[1] / 16) * | |
math.ceil(observation_shape[2] / 16)) if downsample else | |
(policy_head_channels * observation_shape[1] * observation_shape[2]) | |
) | |
self.representation_network = RepresentationNetwork( | |
observation_shape, | |
num_res_blocks, | |
num_channels, | |
downsample, | |
norm_type=self.norm_type, | |
) | |
self.dynamics_network = DynamicsNetwork( | |
observation_shape, | |
self.action_encoding_dim, | |
num_res_blocks, | |
num_channels + self.action_encoding_dim, | |
reward_head_channels, | |
fc_reward_layers, | |
self.reward_support_size, | |
flatten_output_size_for_reward_head, | |
downsample, | |
lstm_hidden_size=self.lstm_hidden_size, | |
last_linear_layer_init_zero=self.last_linear_layer_init_zero, | |
activation=activation, | |
norm_type=norm_type | |
) | |
self.prediction_network = PredictionNetwork( | |
observation_shape, | |
self.continuous_action_space, | |
action_space_size, | |
num_res_blocks, | |
num_channels, | |
value_head_channels, | |
policy_head_channels, | |
fc_value_layers, | |
fc_policy_layers, | |
self.value_support_size, | |
flatten_output_size_for_value_head, | |
flatten_output_size_for_policy_head, | |
downsample, | |
last_linear_layer_init_zero=self.last_linear_layer_init_zero, | |
sigma_type=self.sigma_type, | |
fixed_sigma_value=self.fixed_sigma_value, | |
bound_type=self.bound_type, | |
norm_type=self.norm_type, | |
) | |
if self.self_supervised_learning_loss: | |
# self_supervised_learning_loss related network proposed in EfficientZero | |
if self.downsample: | |
# In Atari, if the observation_shape is set to (12, 96, 96), which indicates the original shape of | |
# (3,96,96), and frame_stack_num is 4. Due to downsample, the encoding of observation (latent_state) is | |
# (64, 96/16, 96/16), where 64 is the number of channels, 96/16 is the size of the latent state. Thus, | |
# self.projection_input_dim = 64 * 96/16 * 96/16 = 64*6*6 = 2304 | |
self.projection_input_dim = num_channels * math.ceil(observation_shape[1] / 16 | |
) * math.ceil(observation_shape[2] / 16) | |
else: | |
self.projection_input_dim = num_channels * observation_shape[1] * observation_shape[2] | |
self.projection = nn.Sequential( | |
nn.Linear(self.projection_input_dim, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation, | |
nn.Linear(self.proj_hid, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation, | |
nn.Linear(self.proj_hid, self.proj_out), nn.BatchNorm1d(self.proj_out) | |
) | |
self.prediction_head = nn.Sequential( | |
nn.Linear(self.proj_out, self.pred_hid), | |
nn.BatchNorm1d(self.pred_hid), | |
activation, | |
nn.Linear(self.pred_hid, self.pred_out), | |
) | |
def initial_inference(self, obs: torch.Tensor) -> EZNetworkOutput: | |
""" | |
Overview: | |
Initial inference of SampledEfficientZero model, which is the first step of the SampledEfficientZero model. | |
To perform the initial inference, we first use the representation network to obtain the "latent_state" of the observation. | |
Then we use the prediction network to predict the "value" and "policy_logits" of the "latent_state", and | |
also prepare the zeros-like ``reward_hidden_state`` for the next step of the SampledEfficientZero model. | |
Arguments: | |
- obs (:obj:`torch.Tensor`): The 2D image observation data. | |
Returns (EZNetworkOutput): | |
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. | |
- value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. \ | |
In initial inference, we set it to zero vector. | |
- policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action. | |
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The hidden state of LSTM about reward. In initial inference, \ | |
we set it to the zeros-like hidden state (H and C). | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size. | |
- value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size. | |
- value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. | |
- policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size. | |
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ | |
latent state, W_ is the width of latent state. | |
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The shape of each element is :math:`(1, B, lstm_hidden_size)`, where B is batch_size. | |
""" | |
batch_size = obs.size(0) | |
latent_state = self._representation(obs) | |
policy_logits, value = self._prediction(latent_state) | |
# zero initialization for reward hidden states | |
# (hn, cn), each element shape is (layer_num=1, batch_size, lstm_hidden_size) | |
reward_hidden_state = ( | |
torch.zeros(1, batch_size, | |
self.lstm_hidden_size).to(obs.device), torch.zeros(1, batch_size, | |
self.lstm_hidden_size).to(obs.device) | |
) | |
return EZNetworkOutput(value, [0. for _ in range(batch_size)], policy_logits, latent_state, reward_hidden_state) | |
def recurrent_inference( | |
self, latent_state: torch.Tensor, reward_hidden_state: torch.Tensor, action: torch.Tensor | |
) -> EZNetworkOutput: | |
""" | |
Overview: | |
Recurrent inference of Sampled EfficientZero model, which is the rollout step of the Sampled EfficientZero model. | |
To perform the recurrent inference, we first use the dynamics network to predict ``next_latent_state``, | |
``reward_hidden_state``, ``value_prefix`` by the given current ``latent_state`` and ``action``. | |
We then use the prediction network to predict the ``value`` and ``policy_logits``. | |
Arguments: | |
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward. | |
- action (:obj:`torch.Tensor`): The predicted action to rollout. | |
Returns (EZNetworkOutput): | |
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. | |
- value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. | |
- policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action. | |
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
- next_latent_state (:obj:`torch.Tensor`): The predicted next latent state. | |
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward. | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size. | |
- action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size. | |
- value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size. | |
- value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. | |
- policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size. | |
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ | |
latent state, W_ is the width of latent state. | |
- next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ | |
latent state, W_ is the width of latent state. | |
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The shape of each element is :math:`(1, B, lstm_hidden_size)`, where B is batch_size. | |
""" | |
next_latent_state, reward_hidden_state, value_prefix = self._dynamics(latent_state, reward_hidden_state, action) | |
policy_logits, value = self._prediction(next_latent_state) | |
return EZNetworkOutput(value, value_prefix, policy_logits, next_latent_state, reward_hidden_state) | |
def _representation(self, observation: torch.Tensor) -> Tuple[torch.Tensor]: | |
""" | |
Overview: | |
Use the representation network to encode the observations into latent state. | |
Arguments: | |
- obs (:obj:`torch.Tensor`): The 2D image observation data. | |
Returns: | |
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size. | |
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ | |
latent state, W_ is the width of latent state. | |
""" | |
latent_state = self.representation_network(observation) | |
if self.state_norm: | |
latent_state = renormalize(latent_state) | |
return latent_state | |
def _prediction(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Overview: | |
use the prediction network to predict the "value" and "policy_logits" of the "latent_state". | |
Arguments: | |
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input obs. | |
Returns: | |
- policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action. | |
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation. | |
Shapes: | |
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ | |
latent state, W_ is the width of latent state. | |
- policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size. | |
- value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size. | |
""" | |
return self.prediction_network(latent_state) | |
def _dynamics(self, latent_state: torch.Tensor, reward_hidden_state: Tuple[torch.Tensor], | |
action: torch.Tensor) -> Tuple[torch.Tensor, Tuple[torch.Tensor], torch.Tensor]: | |
""" | |
Overview: | |
Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state`` | |
``value_prefix`` and ``next_reward_hidden_state``. | |
Arguments: | |
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
- reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The input hidden state of LSTM about reward. | |
- action (:obj:`torch.Tensor`): The predicted action to rollout. | |
Returns: | |
- next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep. | |
- next_reward_hidden_state (:obj:`Tuple[torch.Tensor]`): The output hidden state of LSTM about reward. | |
- value_prefix (:obj:`torch.Tensor`): The predicted prefix sum of value for input state. | |
Shapes: | |
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ | |
latent state, W_ is the width of latent state. | |
- action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size. | |
- next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ | |
latent state, W_ is the width of latent state. | |
- value_prefix (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size. | |
""" | |
# NOTE: the discrete action encoding type is important for some environments | |
if not self.continuous_action_space: | |
# discrete action space | |
if self.discrete_action_encoding_type == 'one_hot': | |
# Stack latent_state with the one hot encoded action. | |
# The final action_encoding shape is (batch_size, action_space_size, latent_state[2], latent_state[3]), e.g. (8, 2, 4, 1). | |
if len(action.shape) == 1: | |
# (batch_size, ) -> (batch_size, 1) | |
# e.g., torch.Size([8]) -> torch.Size([8, 1]) | |
action = action.unsqueeze(-1) | |
# transform action to one-hot encoding. | |
# action_one_hot shape: (batch_size, action_space_size), e.g., (8, 4) | |
action_one_hot = torch.zeros(action.shape[0], self.action_space_size, device=action.device) | |
# transform action to torch.int64 | |
action = action.long() | |
action_one_hot.scatter_(1, action, 1) | |
action_encoding_tmp = action_one_hot.unsqueeze(-1).unsqueeze(-1) | |
action_encoding = action_encoding_tmp.expand( | |
latent_state.shape[0], self.action_space_size, latent_state.shape[2], latent_state.shape[3] | |
) | |
elif self.discrete_action_encoding_type == 'not_one_hot': | |
# Stack latent_state with the normalized encoded action. | |
# The final action_encoding shape is (batch_size, 1, latent_state[2], latent_state[3]), e.g. (8, 1, 4, 1). | |
if len(action.shape) == 2: | |
# (batch_size, action_dim=1) -> (batch_size, 1, 1, 1) | |
# e.g., torch.Size([8, 1]) -> torch.Size([8, 1, 1, 1]) | |
action = action.unsqueeze(-1).unsqueeze(-1) | |
elif len(action.shape) == 1: | |
# (batch_size,) -> (batch_size, 1, 1, 1) | |
# e.g., torch.Size([8]) -> torch.Size([8, 1, 1, 1]) | |
action = action.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) | |
action_encoding = action.expand( | |
latent_state.shape[0], 1, latent_state.shape[2], latent_state.shape[3] | |
) / self.action_space_size | |
else: | |
# continuous action space | |
if len(action.shape) == 1: | |
# (batch_size,) -> (batch_size, action_dim=1, 1, 1) | |
# e.g., torch.Size([8]) -> torch.Size([8, 1, 1, 1]) | |
action = action.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) | |
elif len(action.shape) == 2: | |
# (batch_size, action_dim) -> (batch_size, action_dim, 1, 1) | |
# e.g., torch.Size([8, 2]) -> torch.Size([8, 2, 1, 1]) | |
action = action.unsqueeze(-1).unsqueeze(-1) | |
elif len(action.shape) == 3: | |
# (batch_size, action_dim, 1) -> (batch_size, action_dim) | |
# e.g., torch.Size([8, 2, 1]) -> torch.Size([8, 2, 1, 1]) | |
action = action.unsqueeze(-1) | |
action_encoding_tmp = action | |
action_encoding = action_encoding_tmp.expand( | |
latent_state.shape[0], self.action_space_size, latent_state.shape[2], latent_state.shape[3] | |
) | |
action_encoding = action_encoding.to(latent_state.device).float() | |
# state_action_encoding shape: (batch_size, latent_state[1] + action_dim, latent_state[2], latent_state[3]) or | |
# (batch_size, latent_state[1] + action_space_size, latent_state[2], latent_state[3]) depending on the discrete_action_encoding_type. | |
state_action_encoding = torch.cat((latent_state, action_encoding), dim=1) | |
next_latent_state, next_reward_hidden_state, value_prefix = self.dynamics_network( | |
state_action_encoding, reward_hidden_state | |
) | |
if not self.state_norm: | |
return next_latent_state, next_reward_hidden_state, value_prefix | |
else: | |
next_latent_state_normalized = renormalize(next_latent_state) | |
return next_latent_state_normalized, next_reward_hidden_state, value_prefix | |
def project(self, latent_state: torch.Tensor, with_grad=True) -> torch.Tensor: | |
""" | |
Overview: | |
Project the latent state to a lower dimension to calculate the self-supervised loss, which is proposed in EfficientZero. | |
For more details, please refer to paper ``Exploring Simple Siamese Representation Learning``. | |
Arguments: | |
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state. | |
- with_grad (:obj:`bool`): Whether to calculate gradient for the projection result. | |
Returns: | |
- proj (:obj:`torch.Tensor`): The result embedding vector of projection operation. | |
Shapes: | |
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \ | |
latent state, W_ is the width of latent state. | |
- proj (:obj:`torch.Tensor`): :math:`(B, projection_output_dim)`, where B is batch_size. | |
Examples: | |
>>> latent_state = torch.randn(256, 64, 6, 6) | |
>>> output = self.project(latent_state) | |
>>> output.shape # (256, 1024) | |
.. note:: | |
for Atari: | |
observation_shape = (12, 96, 96), # original shape is (3,96,96), frame_stack_num=4 | |
if downsample is True, latent_state.shape: (batch_size, num_channel, obs_shape[1] / 16, obs_shape[2] / 16) | |
i.e., (256, 64, 96 / 16, 96 / 16) = (256, 64, 6, 6) | |
latent_state reshape: (256, 64, 6, 6) -> (256,64*6*6) = (256, 2304) | |
# self.projection_input_dim = 64*6*6 = 2304 | |
# self.projection_output_dim = 1024 | |
""" | |
latent_state = latent_state.reshape(latent_state.shape[0], -1) | |
proj = self.projection(latent_state) | |
if with_grad: | |
# with grad, use prediction_head | |
return self.prediction_head(proj) | |
else: | |
return proj.detach() | |
def get_params_mean(self): | |
return get_params_mean(self) | |
class PredictionNetwork(nn.Module): | |
def __init__( | |
self, | |
observation_shape: SequenceType, | |
continuous_action_space, | |
action_space_size, | |
num_res_blocks, | |
num_channels, | |
value_head_channels, | |
policy_head_channels, | |
fc_value_layers, | |
fc_policy_layers, | |
output_support_size, | |
flatten_output_size_for_value_head, | |
flatten_output_size_for_policy_head, | |
downsample: bool = False, | |
last_linear_layer_init_zero: bool = True, | |
activation: Optional[nn.Module] = nn.ReLU(inplace=True), | |
# ============================================================== | |
# specific sampled related config | |
# ============================================================== | |
sigma_type='conditioned', | |
fixed_sigma_value: float = 0.3, | |
bound_type: str = None, | |
norm_type: str = 'BN', | |
): | |
""" | |
Overview: | |
The definition of policy and value prediction network, which is used to predict value and policy by the | |
given latent state. | |
The networks are mainly build on res_conv_blocks and fully connected layers. | |
Arguments: | |
- observation_shape (:obj:`SequenceType`): The shape of observation space, e.g. (C, H, W) for image. | |
- continuous_action_space (:obj:`bool`): The type of action space. Default sets it to False. | |
- action_space_size: (:obj:`int`): Action space size, usually an integer number. For discrete action \ | |
space, it is the number of discrete actions. For continuous action space, it is the dimension of \ | |
continuous action. | |
- num_res_blocks (:obj:`int`): number of res blocks in model. | |
- num_channels (:obj:`int`): channels of hidden states. | |
- value_head_channels (:obj:`int`): channels of value head. | |
- policy_head_channels (:obj:`int`): channels of policy head. | |
- fc_value_layers (:obj:`SequenceType`): hidden layers of the value prediction head (MLP head). | |
- fc_policy_layers (:obj:`SequenceType`): hidden layers of the policy prediction head (MLP head). | |
- output_support_size (:obj:`int`): dim of value output. | |
- flatten_output_size_for_value_head (:obj:`int`): dim of flatten hidden states. | |
- flatten_output_size_for_policy_head (:obj:`int`): dim of flatten hidden states. | |
- downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``. | |
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initializationss for the last layer of value/policy mlp, default sets it to True. | |
# ============================================================== | |
# specific sampled related config | |
# ============================================================== | |
# see ``ReparameterizationHead`` in ``ding.model.common.head`` for more details about the following arguments. | |
- sigma_type (:obj:`str`): the type of sigma in policy head of prediction network, options={'conditioned', 'fixed'}. | |
- fixed_sigma_value (:obj:`float`): the fixed sigma value in policy head of prediction network, | |
- bound_type (:obj:`str`): The type of bound in networks. Default sets it to None. | |
- norm_type (:obj:`str`): The type of normalization in networks. Default sets it to 'BN'. | |
""" | |
super().__init__() | |
self.continuous_action_space = continuous_action_space | |
self.flatten_output_size_for_value_head = flatten_output_size_for_value_head | |
self.flatten_output_size_for_policy_head = flatten_output_size_for_policy_head | |
self.norm_type = norm_type | |
self.sigma_type = sigma_type | |
self.fixed_sigma_value = fixed_sigma_value | |
self.bound_type = bound_type | |
self.activation = activation | |
self.resblocks = nn.ModuleList( | |
[ | |
ResBlock( | |
in_channels=num_channels, | |
activation=activation, | |
norm_type='BN', | |
res_type='basic', | |
bias=False | |
) for _ in range(num_res_blocks) | |
] | |
) | |
self.conv1x1_value = nn.Conv2d(num_channels, value_head_channels, 1) | |
self.conv1x1_policy = nn.Conv2d(num_channels, policy_head_channels, 1) | |
if norm_type == 'BN': | |
self.norm_value = nn.BatchNorm2d(value_head_channels) | |
self.norm_policy = nn.BatchNorm2d(policy_head_channels) | |
elif norm_type == 'LN': | |
if downsample: | |
self.norm_value = nn.LayerNorm( | |
[value_head_channels, math.ceil(observation_shape[-2] / 16), math.ceil(observation_shape[-1] / 16)]) | |
self.norm_policy = nn.LayerNorm([policy_head_channels, math.ceil(observation_shape[-2] / 16), | |
math.ceil(observation_shape[-1] / 16)]) | |
else: | |
self.norm_value = nn.LayerNorm([value_head_channels, observation_shape[-2], observation_shape[-1]]) | |
self.norm_policy = nn.LayerNorm([policy_head_channels, observation_shape[-2], observation_shape[-1]]) | |
self.fc_value_head = MLP( | |
in_channels=self.flatten_output_size_for_value_head, | |
hidden_channels=fc_value_layers[0], | |
out_channels=output_support_size, | |
layer_num=len(fc_value_layers) + 1, | |
activation=activation, | |
norm_type=self.norm_type, | |
output_activation=False, | |
output_norm=False, | |
# last_linear_layer_init_zero=True is beneficial for convergence speed. | |
last_linear_layer_init_zero=last_linear_layer_init_zero | |
) | |
# sampled related core code | |
if self.continuous_action_space: | |
self.fc_policy_head = ReparameterizationHead( | |
input_size=self.flatten_output_size_for_policy_head, | |
output_size=action_space_size, | |
layer_num=len(fc_policy_layers) + 1, | |
sigma_type=self.sigma_type, | |
fixed_sigma_value=self.fixed_sigma_value, | |
activation=nn.ReLU(), | |
norm_type=None, | |
bound_type=self.bound_type | |
) | |
else: | |
self.fc_policy_head = MLP( | |
in_channels=self.flatten_output_size_for_policy_head, | |
hidden_channels=fc_policy_layers[0], | |
out_channels=action_space_size, | |
layer_num=len(fc_policy_layers) + 1, | |
activation=activation, | |
norm_type=self.norm_type, | |
output_activation=False, | |
output_norm=False, | |
# last_linear_layer_init_zero=True is beneficial for convergence speed. | |
last_linear_layer_init_zero=last_linear_layer_init_zero | |
) | |
def forward(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Overview: | |
Forward computation of the prediction network. | |
Arguments: | |
- latent_state (:obj:`torch.Tensor`): input tensor with shape (B, in_channels). | |
Returns: | |
- policy (:obj:`torch.Tensor`): policy tensor. If action space is discrete, shape is (B, action_space_size). | |
If action space is continuous, shape is (B, action_space_size * 2). | |
- value (:obj:`torch.Tensor`): value tensor with shape (B, output_support_size). | |
""" | |
for res_block in self.resblocks: | |
latent_state = res_block(latent_state) | |
value = self.conv1x1_value(latent_state) | |
value = self.norm_value(value) | |
value = self.activation(value) | |
policy = self.conv1x1_policy(latent_state) | |
policy = self.norm_policy(policy) | |
policy = self.activation(policy) | |
value = value.reshape(-1, self.flatten_output_size_for_value_head) | |
policy = policy.reshape(-1, self.flatten_output_size_for_policy_head) | |
value = self.fc_value_head(value) | |
# sampled related core code | |
policy = self.fc_policy_head(policy) | |
if self.continuous_action_space: | |
policy = torch.cat([policy['mu'], policy['sigma']], dim=-1) | |
return policy, value | |