Spaces:
Sleeping
Sleeping
import copy | |
from collections import namedtuple | |
from typing import List, Dict, Tuple | |
import numpy as np | |
import torch.distributions | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from ding.policy.base_policy import Policy | |
from ding.torch_utils import to_device | |
from ding.utils import POLICY_REGISTRY | |
from ding.utils.data import default_collate | |
from easydict import EasyDict | |
from lzero.policy import configure_optimizers | |
class AlphaZeroPolicy(Policy): | |
""" | |
Overview: | |
The policy class for AlphaZero. | |
""" | |
# The default_config for AlphaZero policy. | |
config = dict( | |
# (bool) Whether to use torch.compile method to speed up our model, which required torch>=2.0. | |
torch_compile=False, | |
# (bool) Whether to use TF32 for our model. | |
tensor_float_32=False, | |
model=dict( | |
# (tuple) The stacked obs shape. | |
observation_shape=(3, 6, 6), | |
# (int) The number of res blocks in AlphaZero model. | |
num_res_blocks=1, | |
# (int) The number of channels of hidden states in AlphaZero model. | |
num_channels=32, | |
), | |
# (bool) Whether to enable the sampled-based algorithm (e.g. Sampled EfficientZero) | |
# this variable is used in ``collector``. | |
sampled_algo=False, | |
# (bool) Whether to enable the gumbel-based algorithm (e.g. Gumbel Muzero) | |
gumbel_algo=False, | |
# (bool) Whether to use multi-gpu training. | |
multi_gpu=False, | |
# (bool) Whether to use cuda for network. | |
cuda=False, | |
# (int) How many updates(iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
# collect data -> update policy-> collect data -> ... | |
# For different env, we have different episode_length, | |
# we usually set update_per_collect = collector_env_num * episode_length / batch_size * reuse_factor. | |
# If we set update_per_collect=None, we will set update_per_collect = collected_transitions_num * cfg.policy.model_update_ratio automatically. | |
update_per_collect=None, | |
# (float) The ratio of the collected data used for training. Only effective when ``update_per_collect`` is not None. | |
model_update_ratio=0.1, | |
# (int) Minibatch size for one gradient descent. | |
batch_size=256, | |
# (str) Optimizer for training policy network. ['SGD', 'Adam', 'AdamW'] | |
optim_type='SGD', | |
# (float) Learning rate for training policy network. Initial lr for manually decay schedule. | |
learning_rate=0.2, | |
# (float) Weight decay for training policy network. | |
weight_decay=1e-4, | |
# (float) One-order Momentum in optimizer, which stabilizes the training process (gradient direction). | |
momentum=0.9, | |
# (float) The maximum constraint value of gradient norm clipping. | |
grad_clip_value=10, | |
# (float) The weight of value loss. | |
value_weight=1.0, | |
# (int) The number of environments used in collecting data. | |
collector_env_num=8, | |
# (int) The number of environments used in evaluating policy. | |
evaluator_env_num=3, | |
# (bool) Whether to use piecewise constant learning rate decay. | |
# i.e. lr: 0.2 -> 0.02 -> 0.002 | |
lr_piecewise_constant_decay=True, | |
# (int) The number of final training iterations to control lr decay, which is only used for manually decay. | |
threshold_training_steps_for_final_lr=int(5e5), | |
# (bool) Whether to use manually temperature decay. | |
# i.e. temperature: 1 -> 0.5 -> 0.25 | |
manual_temperature_decay=False, | |
# (int) The number of final training iterations to control temperature, which is only used for manually decay. | |
threshold_training_steps_for_final_temperature=int(1e5), | |
# (float) The fixed temperature value for MCTS action selection, which is used to control the exploration. | |
# The larger the value, the more exploration. This value is only used when manual_temperature_decay=False. | |
fixed_temperature_value=0.25, | |
mcts=dict( | |
# (int) The number of simulations to perform at each move. | |
num_simulations=50, | |
# (int) The maximum number of moves to make in a game. | |
max_moves=512, # for chess and shogi, 722 for Go. | |
# (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree. | |
root_dirichlet_alpha=0.3, | |
# (float) The noise weight at the root node of the search tree. | |
root_noise_weight=0.25, | |
# (int) The base constant used in the PUCT formula for balancing exploration and exploitation during tree search. | |
pb_c_base=19652, | |
# (float) The initialization constant used in the PUCT formula for balancing exploration and exploitation during tree search. | |
pb_c_init=1.25, | |
), | |
other=dict(replay_buffer=dict( | |
replay_buffer_size=int(1e6), | |
save_episode=False, | |
)), | |
) | |
def default_model(self) -> Tuple[str, List[str]]: | |
""" | |
Overview: | |
Return this algorithm default model setting for demonstration. | |
Returns: | |
- model_type (:obj:`str`): The model type used in this algorithm, which is registered in ModelRegistry. | |
- import_names (:obj:`List[str]`): The model class path list used in this algorithm. | |
""" | |
return 'AlphaZeroModel', ['lzero.model.alphazero_model'] | |
def _init_learn(self) -> None: | |
assert self._cfg.optim_type in ['SGD', 'Adam', 'AdamW'], self._cfg.optim_type | |
if self._cfg.optim_type == 'SGD': | |
self._optimizer = optim.SGD( | |
self._model.parameters(), | |
lr=self._cfg.learning_rate, | |
momentum=self._cfg.momentum, | |
weight_decay=self._cfg.weight_decay, | |
) | |
elif self._cfg.optim_type == 'Adam': | |
self._optimizer = optim.Adam( | |
self._model.parameters(), lr=self._cfg.learning_rate, weight_decay=self._cfg.weight_decay | |
) | |
elif self._cfg.optim_type == 'AdamW': | |
self._optimizer = configure_optimizers( | |
model=self._model, | |
weight_decay=self._cfg.weight_decay, | |
learning_rate=self._cfg.learning_rate, | |
device_type=self._cfg.device | |
) | |
if self._cfg.lr_piecewise_constant_decay: | |
from torch.optim.lr_scheduler import LambdaLR | |
max_step = self._cfg.threshold_training_steps_for_final_lr | |
# NOTE: the 1, 0.1, 0.01 is the decay rate, not the lr. | |
lr_lambda = lambda step: 1 if step < max_step * 0.5 else (0.1 if step < max_step else 0.01) # noqa | |
self.lr_scheduler = LambdaLR(self._optimizer, lr_lambda=lr_lambda) | |
# Algorithm config | |
self._value_weight = self._cfg.value_weight | |
self._entropy_weight = self._cfg.entropy_weight | |
# Main and target models | |
self._learn_model = self._model | |
# TODO(pu): test the effect of torch 2.0 | |
if self._cfg.torch_compile: | |
self._learn_model = torch.compile(self._learn_model) | |
def _forward_learn(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, float]: | |
inputs = default_collate(inputs) | |
if self._cuda: | |
inputs = to_device(inputs, self._device) | |
self._learn_model.train() | |
state_batch = inputs['obs']['observation'] | |
mcts_probs = inputs['probs'] | |
reward = inputs['reward'] | |
state_batch = state_batch.to(device=self._device, dtype=torch.float) | |
mcts_probs = mcts_probs.to(device=self._device, dtype=torch.float) | |
reward = reward.to(device=self._device, dtype=torch.float) | |
action_probs, values = self._learn_model.compute_policy_value(state_batch) | |
log_probs = torch.log(action_probs) | |
# calculate policy entropy, for monitoring only | |
entropy = torch.mean(-torch.sum(action_probs * log_probs, 1)) | |
entropy_loss = -entropy | |
# ============ | |
# policy loss | |
# ============ | |
policy_loss = -torch.mean(torch.sum(mcts_probs * log_probs, 1)) | |
# ============ | |
# value loss | |
# ============ | |
value_loss = F.mse_loss(values.view(-1), reward) | |
total_loss = self._value_weight * value_loss + policy_loss + self._entropy_weight * entropy_loss | |
self._optimizer.zero_grad() | |
total_loss.backward() | |
if self._cfg.multi_gpu: | |
self.sync_gradients(self._learn_model) | |
total_grad_norm_before_clip = torch.nn.utils.clip_grad_norm_( | |
list(self._model.parameters()), | |
max_norm=self._cfg.grad_clip_value, | |
) | |
self._optimizer.step() | |
if self._cfg.lr_piecewise_constant_decay is True: | |
self.lr_scheduler.step() | |
# ============= | |
# after update | |
# ============= | |
return { | |
'cur_lr': self._optimizer.param_groups[0]['lr'], | |
'total_loss': total_loss.item(), | |
'policy_loss': policy_loss.item(), | |
'value_loss': value_loss.item(), | |
'entropy_loss': entropy_loss.item(), | |
'total_grad_norm_before_clip': total_grad_norm_before_clip.item(), | |
'collect_mcts_temperature': self._collect_mcts_temperature, | |
} | |
def _init_collect(self) -> None: | |
""" | |
Overview: | |
Collect mode init method. Called by ``self.__init__``. Initialize the collect model and MCTS utils. | |
""" | |
self._get_simulation_env() | |
self._collect_model = self._model | |
if self._cfg.mcts_ctree: | |
import sys | |
sys.path.append('/Users/your_user_name/code/LightZero/lzero/mcts/ctree/ctree_alphazero/build') | |
import mcts_alphazero | |
self._collect_mcts = mcts_alphazero.MCTS(self._cfg.mcts.max_moves, self._cfg.mcts.num_simulations, | |
self._cfg.mcts.pb_c_base, | |
self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha, | |
self._cfg.mcts.root_noise_weight, self.simulate_env) | |
else: | |
if self._cfg.sampled_algo: | |
from lzero.mcts.ptree.ptree_az_sampled import MCTS | |
else: | |
from lzero.mcts.ptree.ptree_az import MCTS | |
self._collect_mcts = MCTS(self._cfg.mcts, self.simulate_env) | |
self.collect_mcts_temperature = 1 | |
def _forward_collect(self, obs: Dict, temperature: float = 1) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
The forward function for collecting data in collect mode. Use real env to execute MCTS search. | |
Arguments: | |
- obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \ | |
corresponding obs in this timestep. | |
- temperature (:obj:`float`): The temperature for MCTS search. | |
Returns: | |
- output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \ | |
the corresponding policy output in this timestep, including action, probs and so on. | |
""" | |
self._collect_mcts_temperature = temperature | |
ready_env_id = list(obs.keys()) | |
init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id} | |
# If 'katago_game_state' is in the observation of the given environment ID, it's value is used. | |
# If it's not present (which will raise a KeyError), None is used instead. | |
# This approach is taken to maintain compatibility with the handling of 'katago' related parts of 'alphazero_mcts_ctree' in Go. | |
katago_game_state = {env_id: obs[env_id].get('katago_game_state', None) for env_id in ready_env_id} | |
start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id} | |
output = {} | |
self._policy_model = self._collect_model | |
for env_id in ready_env_id: | |
state_config_for_simulation_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id], | |
init_state=init_state[env_id], | |
katago_policy_init=False, | |
katago_game_state=katago_game_state[env_id])) | |
action, mcts_probs = self._collect_mcts.get_next_action(state_config_for_simulation_env_reset, self._policy_value_fn, self._collect_mcts_temperature, True) | |
output[env_id] = { | |
'action': action, | |
'probs': mcts_probs, | |
} | |
return output | |
def _init_eval(self) -> None: | |
""" | |
Overview: | |
Evaluate mode init method. Called by ``self.__init__``. Initialize the eval model and MCTS utils. | |
""" | |
self._get_simulation_env() | |
if self._cfg.mcts_ctree: | |
import sys | |
sys.path.append('/Users/your_user_name/code/LightZero/lzero/mcts/ctree/ctree_alphazero/build') | |
import mcts_alphazero | |
# TODO(pu): how to set proper num_simulations for evaluation | |
self._eval_mcts = mcts_alphazero.MCTS(self._cfg.mcts.max_moves, | |
min(800, self._cfg.mcts.num_simulations * 4), | |
self._cfg.mcts.pb_c_base, | |
self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha, | |
self._cfg.mcts.root_noise_weight, self.simulate_env) | |
else: | |
if self._cfg.sampled_algo: | |
from lzero.mcts.ptree.ptree_az_sampled import MCTS | |
else: | |
from lzero.mcts.ptree.ptree_az import MCTS | |
mcts_eval_config = copy.deepcopy(self._cfg.mcts) | |
# TODO(pu): how to set proper num_simulations for evaluation | |
mcts_eval_config.num_simulations = min(800, mcts_eval_config.num_simulations * 4) | |
self._eval_mcts = MCTS(mcts_eval_config, self.simulate_env) | |
self._eval_model = self._model | |
def _forward_eval(self, obs: Dict) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
The forward function for evaluating the current policy in eval mode, similar to ``self._forward_collect``. | |
Arguments: | |
- obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \ | |
corresponding obs in this timestep. | |
Returns: | |
- output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \ | |
the corresponding policy output in this timestep, including action, probs and so on. | |
""" | |
ready_env_id = list(obs.keys()) | |
init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id} | |
# If 'katago_game_state' is in the observation of the given environment ID, it's value is used. | |
# If it's not present (which will raise a KeyError), None is used instead. | |
# This approach is taken to maintain compatibility with the handling of 'katago' related parts of 'alphazero_mcts_ctree' in Go. | |
katago_game_state = {env_id: obs[env_id].get('katago_game_state', None) for env_id in ready_env_id} | |
start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id} | |
output = {} | |
self._policy_model = self._eval_model | |
for env_id in ready_env_id: | |
state_config_for_simulation_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id], | |
init_state=init_state[env_id], | |
katago_policy_init=False, | |
katago_game_state=katago_game_state[env_id])) | |
action, mcts_probs = self._eval_mcts.get_next_action( | |
state_config_for_simulation_env_reset, self._policy_value_fn, 1.0, False | |
) | |
output[env_id] = { | |
'action': action, | |
'probs': mcts_probs, | |
} | |
return output | |
def _get_simulation_env(self): | |
if self._cfg.simulation_env_name == 'tictactoe': | |
from zoo.board_games.tictactoe.envs.tictactoe_env import TicTacToeEnv | |
if self._cfg.simulation_env_config_type == 'play_with_bot': | |
from zoo.board_games.tictactoe.config.tictactoe_alphazero_bot_mode_config import \ | |
tictactoe_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'self_play': | |
from zoo.board_games.tictactoe.config.tictactoe_alphazero_sp_mode_config import \ | |
tictactoe_alphazero_config | |
else: | |
raise NotImplementedError | |
self.simulate_env = TicTacToeEnv(tictactoe_alphazero_config.env) | |
elif self._cfg.simulation_env_name == 'gomoku': | |
from zoo.board_games.gomoku.envs.gomoku_env import GomokuEnv | |
if self._cfg.simulation_env_config_type == 'play_with_bot': | |
from zoo.board_games.gomoku.config.gomoku_alphazero_bot_mode_config import gomoku_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'self_play': | |
from zoo.board_games.gomoku.config.gomoku_alphazero_sp_mode_config import gomoku_alphazero_config | |
else: | |
raise NotImplementedError | |
self.simulate_env = GomokuEnv(gomoku_alphazero_config.env) | |
elif self._cfg.simulation_env_name == 'connect4': | |
from zoo.board_games.connect4.envs.connect4_env import Connect4Env | |
if self._cfg.simulation_env_config_type == 'play_with_bot': | |
from zoo.board_games.connect4.config.connect4_alphazero_bot_mode_config import connect4_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'self_play': | |
from zoo.board_games.connect4.config.connect4_alphazero_sp_mode_config import connect4_alphazero_config | |
else: | |
raise NotImplementedError | |
self.simulate_env = Connect4Env(connect4_alphazero_config.env) | |
else: | |
raise NotImplementedError | |
def _policy_value_fn(self, env: 'Env') -> Tuple[Dict[int, np.ndarray], float]: # noqa | |
legal_actions = env.legal_actions | |
current_state, current_state_scale = env.current_state() | |
current_state_scale = torch.from_numpy(current_state_scale).to( | |
device=self._device, dtype=torch.float | |
).unsqueeze(0) | |
with torch.no_grad(): | |
action_probs, value = self._policy_model.compute_policy_value(current_state_scale) | |
action_probs_dict = dict(zip(legal_actions, action_probs.squeeze(0)[legal_actions].detach().cpu().numpy())) | |
return action_probs_dict, value.item() | |
def _monitor_vars_learn(self) -> List[str]: | |
""" | |
Overview: | |
Register the variables to be monitored in learn mode. The registered variables will be logged in | |
tensorboard according to the return value ``_forward_learn``. | |
""" | |
return super()._monitor_vars_learn() + [ | |
'cur_lr', 'total_loss', 'policy_loss', 'value_loss', 'entropy_loss', 'total_grad_norm_before_clip', | |
'collect_mcts_temperature' | |
] | |
def _process_transition(self, obs: Dict, model_output: Dict[str, torch.Tensor], timestep: namedtuple) -> Dict: | |
""" | |
Overview: | |
Generate the dict type transition (one timestep) data from policy learning. | |
""" | |
return { | |
'obs': obs, | |
'next_obs': timestep.obs, | |
'action': model_output['action'], | |
'probs': model_output['probs'], | |
'reward': timestep.reward, | |
'done': timestep.done, | |
} | |
def _get_train_sample(self, data): | |
# be compatible with DI-engine Policy class | |
pass | |