Spaces:
Sleeping
Sleeping
from typing import List, Dict, Any, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ding.policy.base_policy import Policy | |
from ding.utils import POLICY_REGISTRY | |
from lzero.policy import InverseScalarTransform, select_action, ez_network_output_unpack, mz_network_output_unpack | |
class LightZeroRandomPolicy(Policy): | |
""" | |
Overview: | |
The policy class for LightZero RandomPolicy. | |
""" | |
def __init__( | |
self, | |
cfg: dict, | |
model: Optional[Union[type, torch.nn.Module]] = None, | |
enable_field: Optional[List[str]] = None, | |
action_space: Any = None, | |
): | |
if cfg.type == 'muzero': | |
from lzero.mcts import MuZeroMCTSCtree as MCTSCtree | |
from lzero.mcts import MuZeroMCTSPtree as MCTSPtree | |
elif cfg.type == 'efficientzero': | |
from lzero.mcts import EfficientZeroMCTSCtree as MCTSCtree | |
from lzero.mcts import EfficientZeroMCTSPtree as MCTSPtree | |
elif cfg.type == 'sampled_efficientzero': | |
from lzero.mcts import SampledEfficientZeroMCTSCtree as MCTSCtree | |
from lzero.mcts import SampledEfficientZeroMCTSPtree as MCTSPtree | |
else: | |
raise NotImplementedError("need to implement pipeline: {}".format(cfg.type)) | |
self.MCTSCtree = MCTSCtree | |
self.MCTSPtree = MCTSPtree | |
self.action_space = action_space | |
super().__init__(cfg, model, enable_field) | |
def default_model(self) -> Tuple[str, List[str]]: | |
""" | |
Overview: | |
Return this algorithm default model setting. | |
Returns: | |
- model_info (:obj:`Tuple[str, List[str]]`): model name and model import_names. | |
- model_type (:obj:`str`): The model type used in this algorithm, which is registered in ModelRegistry. | |
- import_names (:obj:`List[str]`): The model class path list used in this algorithm. | |
.. note:: | |
The user can define and use customized network model but must obey the same interface definition indicated \ | |
by import_names path. For EfficientZero, ``lzero.model.efficientzero_model.EfficientZeroModel`` | |
""" | |
if self._cfg.model.model_type == "conv": | |
if self._cfg.type == 'efficientzero': | |
return 'EfficientZeroModel', ['lzero.model.efficientzero_model'] | |
elif self._cfg.type == 'muzero': | |
return 'MuZeroModel', ['lzero.model.muzero_model'] | |
elif self._cfg.type == 'sampled_efficientzero': | |
return 'SampledEfficientZeroModel', ['lzero.model.sampled_efficientzero_model'] | |
else: | |
raise NotImplementedError("need to implement pipeline: {}".format(self._cfg.type)) | |
elif self._cfg.model.model_type == "mlp": | |
if self._cfg.type == 'efficientzero': | |
return 'EfficientZeroModelMLP', ['lzero.model.efficientzero_model_mlp'] | |
elif self._cfg.type == 'muzero': | |
return 'MuZeroModelMLP', ['lzero.model.muzero_model_mlp'] | |
elif self._cfg.type == 'sampled_efficientzero': | |
return 'SampledEfficientZeroModelMLP', ['lzero.model.sampled_efficientzero_model_mlp'] | |
else: | |
raise NotImplementedError("need to implement pipeline: {}".format(self._cfg.type)) | |
def _init_collect(self) -> None: | |
""" | |
Overview: | |
Collect mode init method. Called by ``self.__init__``. Initialize the collect model and MCTS utils. | |
""" | |
self._collect_model = self._model | |
if self._cfg.mcts_ctree: | |
self._mcts_collect = self.MCTSCtree(self._cfg) | |
else: | |
self._mcts_collect = self.MCTSPtree(self._cfg) | |
self._collect_mcts_temperature = 1 | |
self.collect_epsilon = 0.0 | |
self.inverse_scalar_transform_handle = InverseScalarTransform( | |
self._cfg.model.support_scale, self._cfg.device, self._cfg.model.categorical_distribution | |
) | |
def _forward_collect( | |
self, | |
data: torch.Tensor, | |
action_mask: list = None, | |
temperature: float = 1, | |
to_play: List = [-1], | |
epsilon: float = 0.25, | |
ready_env_id: np.array = None, | |
) -> Dict: | |
""" | |
Overview: | |
The forward function for collecting data in collect mode. Use model to execute MCTS search. | |
Choosing the action through sampling during the collect mode. | |
Arguments: | |
- data (:obj:`torch.Tensor`): The input data, i.e. the observation. | |
- action_mask (:obj:`list`): The action mask, i.e. the action that cannot be selected. | |
- temperature (:obj:`float`): The temperature of the policy. | |
- to_play (:obj:`int`): The player to play. | |
- ready_env_id (:obj:`list`): The id of the env that is ready to collect. | |
Shape: | |
- data (:obj:`torch.Tensor`): | |
- For Atari, :math:`(N, C*S, H, W)`, where N is the number of collect_env, C is the number of channels, \ | |
S is the number of stacked frames, H is the height of the image, W is the width of the image. | |
- For lunarlander, :math:`(N, O)`, where N is the number of collect_env, O is the observation space size. | |
- action_mask: :math:`(N, action_space_size)`, where N is the number of collect_env. | |
- temperature: :math:`(1, )`. | |
- to_play: :math:`(N, 1)`, where N is the number of collect_env. | |
- ready_env_id: None | |
Returns: | |
- output (:obj:`Dict[int, Any]`): Dict type data, the keys including ``action``, ``distributions``, \ | |
``visit_count_distribution_entropy``, ``value``, ``pred_value``, ``policy_logits``. | |
""" | |
self._collect_model.eval() | |
self._collect_mcts_temperature = temperature | |
active_collect_env_num = data.shape[0] | |
with torch.no_grad(): | |
# data shape [B, S x C, W, H], e.g. {Tensor:(B, 12, 96, 96)} | |
network_output = self._collect_model.initial_inference(data) | |
if self._cfg.type in ['efficientzero', 'sampled_efficientzero']: | |
latent_state_roots, value_prefix_roots, reward_hidden_state_roots, pred_values, policy_logits = ez_network_output_unpack( | |
network_output | |
) | |
elif self._cfg.type == 'muzero': | |
latent_state_roots, reward_roots, pred_values, policy_logits = mz_network_output_unpack(network_output) | |
else: | |
raise NotImplementedError("need to implement pipeline: {}".format(self._cfg.type)) | |
pred_values = self.inverse_scalar_transform_handle(pred_values).detach().cpu().numpy() | |
latent_state_roots = latent_state_roots.detach().cpu().numpy() | |
if self._cfg.type in ['efficientzero', 'sampled_efficientzero']: | |
reward_hidden_state_roots = ( | |
reward_hidden_state_roots[0].detach().cpu().numpy(), | |
reward_hidden_state_roots[1].detach().cpu().numpy() | |
) | |
policy_logits = policy_logits.detach().cpu().numpy().tolist() | |
if self._cfg.model.continuous_action_space: | |
# when the action space of the environment is continuous, action_mask[:] is None. | |
# NOTE: in continuous action space env: we set all legal_actions as -1 | |
legal_actions = [ | |
[-1 for _ in range(self._cfg.model.num_of_sampled_actions)] for _ in range(active_collect_env_num) | |
] | |
else: | |
legal_actions = [ | |
[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(active_collect_env_num) | |
] | |
# the only difference between collect and eval is the dirichlet noise. | |
if self._cfg.type in ['sampled_efficientzero']: | |
noises = [ | |
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * int(self._cfg.model.num_of_sampled_actions) | |
).astype(np.float32).tolist() for j in range(active_collect_env_num) | |
] | |
else: | |
noises = [ | |
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * int(sum(action_mask[j])) | |
).astype(np.float32).tolist() for j in range(active_collect_env_num) | |
] | |
if self._cfg.mcts_ctree: | |
# cpp mcts_tree | |
if self._cfg.type in ['sampled_efficientzero']: | |
roots = self.MCTSCtree.roots( | |
active_collect_env_num, legal_actions, self._cfg.model.action_space_size, | |
self._cfg.model.num_of_sampled_actions, self._cfg.model.continuous_action_space | |
) | |
else: | |
roots = self.MCTSCtree.roots(active_collect_env_num, legal_actions) | |
else: | |
# python mcts_tree | |
if self._cfg.type in ['sampled_efficientzero']: | |
roots = self.MCTSPtree.roots( | |
active_collect_env_num, legal_actions, self._cfg.model.action_space_size, | |
self._cfg.model.num_of_sampled_actions, self._cfg.model.continuous_action_space | |
) | |
else: | |
roots = self.MCTSPtree.roots(active_collect_env_num, legal_actions) | |
if self._cfg.type in ['efficientzero', 'sampled_efficientzero']: | |
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_roots, policy_logits, to_play) | |
self._mcts_collect.search( | |
roots, self._collect_model, latent_state_roots, reward_hidden_state_roots, to_play | |
) | |
elif self._cfg.type == 'muzero': | |
roots.prepare(self._cfg.root_noise_weight, noises, reward_roots, policy_logits, to_play) | |
self._mcts_collect.search(roots, self._collect_model, latent_state_roots, to_play) | |
else: | |
raise NotImplementedError("need to implement pipeline: {}".format(self._cfg.type)) | |
roots_visit_count_distributions = roots.get_distributions() | |
roots_values = roots.get_values() # shape: {list: batch_size} | |
if self._cfg.type in ['sampled_efficientzero']: | |
roots_sampled_actions = roots.get_sampled_actions() | |
data_id = [i for i in range(active_collect_env_num)] | |
output = {i: None for i in data_id} | |
if ready_env_id is None: | |
ready_env_id = np.arange(active_collect_env_num) | |
for i, env_id in enumerate(ready_env_id): | |
distributions, value = roots_visit_count_distributions[i], roots_values[i] | |
if self._cfg.type in ['sampled_efficientzero']: | |
if self._cfg.mcts_ctree: | |
# In ctree, the method roots.get_sampled_actions() returns a list object. | |
root_sampled_actions = np.array([action for action in roots_sampled_actions[i]]) | |
else: | |
# In ptree, the same method roots.get_sampled_actions() returns an Action object. | |
root_sampled_actions = np.array([action.value for action in roots_sampled_actions[i]]) | |
# NOTE: Only legal actions possess visit counts, so the ``action_index_in_legal_action_set`` represents | |
# the index within the legal action set, rather than the index in the entire action set. | |
action_index_in_legal_action_set, visit_count_distribution_entropy = select_action( | |
distributions, temperature=self._collect_mcts_temperature, deterministic=False | |
) | |
# **************************************************************** | |
# NOTE: The action is randomly selected from the legal action set, | |
# the distribution is the real visit count distribution from the MCTS search. | |
if self._cfg.type in ['sampled_efficientzero']: | |
# ****** sample a random action from the legal action set ******** | |
random_action = self.action_space.sample() | |
output[env_id] = { | |
'action': random_action, | |
'visit_count_distributions': distributions, | |
'root_sampled_actions': root_sampled_actions, | |
'visit_count_distribution_entropy': visit_count_distribution_entropy, | |
'searched_value': value, | |
'predicted_value': pred_values[i], | |
'predicted_policy_logits': policy_logits[i], | |
} | |
else: | |
# ****** sample a random action from the legal action set ******** | |
random_action = int(np.random.choice(legal_actions[env_id], 1)) | |
# all items except action are formally obtained from MCTS | |
output[env_id] = { | |
'action': random_action, | |
'visit_count_distributions': distributions, | |
'visit_count_distribution_entropy': visit_count_distribution_entropy, | |
'searched_value': value, | |
'predicted_value': pred_values[i], | |
'predicted_policy_logits': policy_logits[i], | |
} | |
return output | |
def _init_eval(self) -> None: | |
""" | |
Overview: | |
Evaluate mode init method. Called by ``self.__init__``. Initialize the eval model and MCTS utils. | |
""" | |
self._eval_model = self._model | |
if self._cfg.mcts_ctree: | |
self._mcts_eval = self.MCTSCtree(self._cfg) | |
else: | |
self._mcts_eval = self.MCTSPtree(self._cfg) | |
# be compatible with DI-engine Policy class | |
def _init_learn(self) -> None: | |
pass | |
def _forward_learn(self, data: torch.Tensor) -> Dict[str, Union[float, int]]: | |
pass | |
def _forward_eval(self, data: torch.Tensor, action_mask: list, to_play: -1, ready_env_id: np.array = None,): | |
pass | |
def _monitor_vars_learn(self) -> List[str]: | |
pass | |
def _state_dict_learn(self) -> Dict[str, Any]: | |
pass | |
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None: | |
pass | |
def _process_transition(self, obs, policy_output, timestep): | |
pass | |
def _get_train_sample(self, data): | |
pass | |