Spaces:
Sleeping
Sleeping
import copy | |
from collections import namedtuple | |
from typing import List, Dict, Tuple | |
import numpy as np | |
import torch.distributions | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from ding.policy.base_policy import Policy | |
from ding.torch_utils import to_device | |
from ding.utils import POLICY_REGISTRY | |
from ding.utils.data import default_collate | |
from easydict import EasyDict | |
from lzero.policy import configure_optimizers | |
from lzero.policy.utils import pad_and_get_lengths, compute_entropy | |
class SampledAlphaZeroPolicy(Policy): | |
""" | |
Overview: | |
The policy class for Sampled AlphaZero. | |
""" | |
# The default_config for AlphaZero policy. | |
config = dict( | |
# (str) The type of policy, as the key of the policy registry. | |
type='alphazero', | |
# (bool) Whether to enable the sampled-based algorithm (e.g. Sampled AlphaZero) | |
# this variable is used in ``collector``. | |
sampled_algo=False, | |
normalize_prob_of_sampled_actions=False, | |
policy_loss_type='cross_entropy', # options={'cross_entropy', 'KL'} | |
# (bool) Whether to use torch.compile method to speed up our model, which required torch>=2.0. | |
torch_compile=False, | |
# (bool) Whether to use TF32 for our model. | |
tensor_float_32=False, | |
model=dict( | |
# (tuple) The stacked obs shape. | |
observation_shape=(3, 6, 6), | |
# (int) The number of res blocks in AlphaZero model. | |
num_res_blocks=1, | |
# (int) The number of channels of hidden states in AlphaZero model. | |
num_channels=32, | |
), | |
# (bool) Whether to use C++ MCTS in policy. If False, use Python implementation. | |
mcts_ctree=True, | |
# (bool) Whether to use cuda for network. | |
cuda=False, | |
# (int) How many updates(iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
# collect data -> update policy-> collect data -> ... | |
# For different env, we have different episode_length, | |
# we usually set update_per_collect = collector_env_num * episode_length / batch_size * reuse_factor. | |
# If we set update_per_collect=None, we will set update_per_collect = collected_transitions_num * cfg.policy.model_update_ratio automatically. | |
update_per_collect=None, | |
# (float) The ratio of the collected data used for training. Only effective when ``update_per_collect`` is not None. | |
model_update_ratio=0.1, | |
# (int) Minibatch size for one gradient descent. | |
batch_size=256, | |
# (str) Optimizer for training policy network. ['SGD', 'Adam', 'AdamW'] | |
optim_type='SGD', | |
# (float) Learning rate for training policy network. Initial lr for manually decay schedule. | |
learning_rate=0.2, | |
# (float) Weight decay for training policy network. | |
weight_decay=1e-4, | |
# (float) One-order Momentum in optimizer, which stabilizes the training process (gradient direction). | |
momentum=0.9, | |
# (float) The maximum constraint value of gradient norm clipping. | |
grad_clip_value=10, | |
# (float) The weight of value loss. | |
value_weight=1.0, | |
# (int) The number of environments used in collecting data. | |
collector_env_num=8, | |
# (int) The number of environments used in evaluating policy. | |
evaluator_env_num=3, | |
# (bool) Whether to use piecewise constant learning rate decay. | |
# i.e. lr: 0.2 -> 0.02 -> 0.002 | |
lr_piecewise_constant_decay=True, | |
# (int) The number of final training iterations to control lr decay, which is only used for manually decay. | |
threshold_training_steps_for_final_lr=int(5e5), | |
# (bool) Whether to use manually temperature decay. | |
# i.e. temperature: 1 -> 0.5 -> 0.25 | |
manual_temperature_decay=False, | |
# (int) The number of final training iterations to control temperature, which is only used for manually decay. | |
threshold_training_steps_for_final_temperature=int(1e5), | |
# (float) The fixed temperature value for MCTS action selection, which is used to control the exploration. | |
# The larger the value, the more exploration. This value is only used when manual_temperature_decay=False. | |
fixed_temperature_value=0.25, | |
mcts=dict( | |
# (int) The number of simulations to perform at each move. | |
num_simulations=50, | |
# (int) The maximum number of moves to make in a game. | |
max_moves=512, # for chess and shogi, 722 for Go. | |
# (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree. | |
root_dirichlet_alpha=0.3, | |
# (float) The noise weight at the root node of the search tree. | |
root_noise_weight=0.25, | |
# (int) The base constant used in the PUCT formula for balancing exploration and exploitation during tree search. | |
pb_c_base=19652, | |
# (float) The initialization constant used in the PUCT formula for balancing exploration and exploitation during tree search. | |
pb_c_init=1.25, | |
# | |
legal_actions=None, | |
# (int) The action space size. | |
action_space_size=9, | |
# (int) The number of sampled actions for each state. | |
num_of_sampled_actions=2, | |
# | |
continuous_action_space=False, | |
), | |
other=dict(replay_buffer=dict( | |
replay_buffer_size=int(1e6), | |
save_episode=False, | |
)), | |
) | |
def default_model(self) -> Tuple[str, List[str]]: | |
""" | |
Overview: | |
Return this algorithm default model setting for demonstration. | |
Returns: | |
- model_type (:obj:`str`): The model type used in this algorithm, which is registered in ModelRegistry. | |
- import_names (:obj:`List[str]`): The model class path list used in this algorithm. | |
""" | |
return 'AlphaZeroModel', ['lzero.model.alphazero_model'] | |
def _init_learn(self) -> None: | |
assert self._cfg.optim_type in ['SGD', 'Adam', 'AdamW'], self._cfg.optim_type | |
if self._cfg.optim_type == 'SGD': | |
self._optimizer = optim.SGD( | |
self._model.parameters(), | |
lr=self._cfg.learning_rate, | |
momentum=self._cfg.momentum, | |
weight_decay=self._cfg.weight_decay, | |
) | |
elif self._cfg.optim_type == 'Adam': | |
self._optimizer = optim.Adam( | |
self._model.parameters(), lr=self._cfg.learning_rate, weight_decay=self._cfg.weight_decay | |
) | |
elif self._cfg.optim_type == 'AdamW': | |
self._optimizer = configure_optimizers( | |
model=self._model, | |
weight_decay=self._cfg.weight_decay, | |
learning_rate=self._cfg.learning_rate, | |
device_type=self._cfg.device | |
) | |
if self._cfg.lr_piecewise_constant_decay: | |
from torch.optim.lr_scheduler import LambdaLR | |
max_step = self._cfg.threshold_training_steps_for_final_lr | |
# NOTE: the 1, 0.1, 0.01 is the decay rate, not the lr. | |
# lr_lambda = lambda step: 1 if step < max_step * 0.5 else (0.1 if step < max_step else 0.01) # noqa | |
lr_lambda = lambda step: 1 if step < max_step * 0.33 else (0.1 if step < max_step * 0.66 else 0.01) # noqa | |
self.lr_scheduler = LambdaLR(self._optimizer, lr_lambda=lr_lambda) | |
# Algorithm config | |
self._value_weight = self._cfg.value_weight | |
self._entropy_weight = self._cfg.entropy_weight | |
# Main and target models | |
self._learn_model = self._model | |
# TODO(pu): test the effect of torch 2.0 | |
if self._cfg.torch_compile: | |
self._learn_model = torch.compile(self._learn_model) | |
def _forward_learn(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, float]: | |
for input_dict in inputs: | |
# Check and remove 'katago_game_state' from 'obs' if it exists | |
if 'katago_game_state' in input_dict['obs']: | |
del input_dict['obs']['katago_game_state'] | |
# Check and remove 'katago_game_state' from 'next_obs' if it exists | |
if 'katago_game_state' in input_dict['next_obs']: | |
del input_dict['next_obs']['katago_game_state'] | |
# list of dict -> dict of list | |
# only for env with variable legal actions | |
inputs = pad_and_get_lengths(inputs, self._cfg.mcts.num_of_sampled_actions) | |
inputs = default_collate(inputs) | |
valid_action_length = inputs['action_length'] | |
if self._cuda: | |
inputs = to_device(inputs, self._device) | |
self._learn_model.train() | |
state_batch = inputs['obs']['observation'] | |
mcts_visit_count_probs = inputs['probs'] | |
reward = inputs['reward'] | |
root_sampled_actions = inputs['root_sampled_actions'] | |
if len(root_sampled_actions.shape) == 1: | |
print(f"root_sampled_actions.shape: {root_sampled_actions.shape}") | |
state_batch = state_batch.to(device=self._device, dtype=torch.float) | |
mcts_visit_count_probs = mcts_visit_count_probs.to(device=self._device, dtype=torch.float) | |
reward = reward.to(device=self._device, dtype=torch.float) | |
policy_probs, values = self._learn_model.compute_policy_value(state_batch) | |
policy_log_probs = torch.log(policy_probs) | |
# calculate policy entropy, for monitoring only | |
entropy = compute_entropy(policy_probs) | |
entropy_loss = -entropy | |
# ============================================================== | |
# policy loss | |
# ============================================================== | |
policy_loss = self._calculate_policy_loss_disc(policy_probs, mcts_visit_count_probs, root_sampled_actions, | |
valid_action_length) | |
# ============================================================== | |
# value loss | |
# ============================================================== | |
value_loss = F.mse_loss(values.view(-1), reward) | |
total_loss = self._value_weight * value_loss + policy_loss + self._entropy_weight * entropy_loss | |
self._optimizer.zero_grad() | |
total_loss.backward() | |
total_grad_norm_before_clip = torch.nn.utils.clip_grad_norm_( | |
list(self._model.parameters()), | |
max_norm=self._cfg.grad_clip_value, | |
) | |
self._optimizer.step() | |
if self._cfg.lr_piecewise_constant_decay is True: | |
self.lr_scheduler.step() | |
# ============= | |
# after update | |
# ============= | |
return { | |
'cur_lr': self._optimizer.param_groups[0]['lr'], | |
'total_loss': total_loss.item(), | |
'policy_loss': policy_loss.item(), | |
'value_loss': value_loss.item(), | |
'entropy_loss': entropy_loss.item(), | |
'total_grad_norm_before_clip': total_grad_norm_before_clip.item(), | |
'collect_mcts_temperature': self.collect_mcts_temperature, | |
} | |
def _calculate_policy_loss_disc( | |
self, policy_probs: torch.Tensor, target_policy: torch.Tensor, | |
target_sampled_actions: torch.Tensor, valid_action_lengths: torch.Tensor | |
) -> torch.Tensor: | |
# For each batch and each sampled action, get the corresponding probability | |
# from policy_probs and target_policy, and put it into sampled_policy_probs and | |
# sampled_target_policy at the same position. | |
sampled_policy_probs = policy_probs.gather(1, target_sampled_actions) | |
sampled_target_policy = target_policy.gather(1, target_sampled_actions) | |
# Create a mask for valid actions | |
max_length = target_sampled_actions.size(1) | |
mask = torch.arange(max_length).expand(len(valid_action_lengths), max_length) < valid_action_lengths.unsqueeze( | |
1) | |
mask = mask.to(device=self._device) | |
# Apply the mask to sampled_policy_probs and sampled_target_policy | |
sampled_policy_probs = sampled_policy_probs * mask.float() | |
sampled_target_policy = sampled_target_policy * mask.float() | |
# Normalize sampled_policy_probs and sampled_target_policy | |
sampled_policy_probs = sampled_policy_probs / (sampled_policy_probs.sum(dim=1, keepdim=True) + 1e-6) | |
sampled_target_policy = sampled_target_policy / (sampled_target_policy.sum(dim=1, keepdim=True) + 1e-6) | |
# after normalization, the sum of each row should be 1, but the prob corresponding to valid action becomes a small non-zero value | |
# Use torch.where to prevent gradients for invalid actions | |
sampled_policy_probs = torch.where(mask, sampled_policy_probs, torch.zeros_like(sampled_policy_probs)) | |
sampled_target_policy = torch.where(mask, sampled_target_policy, torch.zeros_like(sampled_target_policy)) | |
if self._cfg.policy_loss_type == 'KL': | |
# Calculate the KL divergence between sampled_policy_probs and sampled_target_policy | |
# The KL divergence between 2 probability distributions P and Q is defined as: | |
# KL(P || Q) = sum(P(i) * log(P(i) / Q(i))) | |
# We use the PyTorch function kl_div to calculate it. | |
loss = torch.nn.functional.kl_div( | |
sampled_policy_probs.log(), sampled_target_policy, reduction='none' | |
) | |
loss = torch.nan_to_num(loss) | |
# Apply the mask to the loss | |
loss = loss * mask.float() | |
# Calculate the mean loss over the batch | |
loss = loss.sum() / mask.sum() | |
elif self._cfg.policy_loss_type == 'cross_entropy': | |
# Calculate the cross entropy loss between sampled_policy_probs and sampled_target_policy | |
# The cross entropy between 2 probability distributions P and Q is defined as: | |
# H(P, Q) = -sum(P(i) * log(Q(i))) | |
# We use the PyTorch function cross_entropy to calculate it. | |
loss = torch.nn.functional.cross_entropy( | |
sampled_policy_probs, torch.argmax(sampled_target_policy, dim=1), reduction='none' | |
) | |
# 使用 nan_to_num 将 loss 中的 nan 值设置为0 | |
loss = torch.nan_to_num(loss) | |
# Apply the mask to the loss | |
loss = loss * mask.float() | |
# Calculate the mean loss over the batch | |
loss = loss.sum() / mask.sum() | |
else: | |
raise ValueError(f"Invalid policy_loss_type: {self._cfg.policy_loss_type}") | |
return loss | |
def _init_collect(self) -> None: | |
""" | |
Overview: | |
Collect mode init method. Called by ``self.__init__``. Initialize the collect model and MCTS utils. | |
""" | |
self._get_simulation_env() | |
self._collect_model = self._model | |
if self._cfg.mcts_ctree: | |
import sys | |
sys.path.append('./LightZero/lzero/mcts/ctree/ctree_alphazero/build') | |
import mcts_alphazero | |
self._collect_mcts = mcts_alphazero.MCTS(self._cfg.mcts.max_moves, self._cfg.mcts.num_simulations, | |
self._cfg.mcts.pb_c_base, | |
self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha, | |
self._cfg.mcts.root_noise_weight, self.simulate_env) | |
else: | |
if self._cfg.sampled_algo: | |
from lzero.mcts.ptree.ptree_az_sampled import MCTS | |
else: | |
from lzero.mcts.ptree.ptree_az import MCTS | |
self._collect_mcts = MCTS(self._cfg.mcts, self.simulate_env) | |
self.collect_mcts_temperature = 1 | |
def _forward_collect(self, obs: Dict, temperature: float = 1) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
The forward function for collecting data in collect mode. Use real env to execute MCTS search. | |
Arguments: | |
- obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \ | |
corresponding obs in this timestep. | |
- temperature (:obj:`float`): The temperature for MCTS search. | |
Returns: | |
- output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \ | |
the corresponding policy output in this timestep, including action, probs and so on. | |
""" | |
self.collect_mcts_temperature = temperature | |
ready_env_id = list(obs.keys()) | |
init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id} | |
try: | |
katago_game_state = {env_id: obs[env_id]['katago_game_state'] for env_id in ready_env_id} | |
except Exception as e: | |
katago_game_state = {env_id: None for env_id in ready_env_id} | |
start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id} | |
output = {} | |
self._policy_model = self._collect_model | |
for env_id in ready_env_id: | |
# print('[collect] start_player_index={}'.format(start_player_index[env_id])) | |
# print('[collect] init_state=\n{}'.format(init_state[env_id])) | |
state_config_for_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id], | |
init_state=init_state[env_id], | |
katago_policy_init=True, | |
katago_game_state=katago_game_state[env_id])) | |
action, mcts_visit_count_probs = self._collect_mcts.get_next_action( | |
state_config_for_env_reset, | |
self._policy_value_func, | |
self.collect_mcts_temperature, | |
True, | |
) | |
# if np.array_equal(self._collect_mcts.get_sampled_actions(), np.array([2, 2, 3])): | |
# print('debug') | |
output[env_id] = { | |
'action': action, | |
'probs': mcts_visit_count_probs, | |
'root_sampled_actions': self._collect_mcts.get_sampled_actions(), | |
} | |
return output | |
def _init_eval(self) -> None: | |
""" | |
Overview: | |
Evaluate mode init method. Called by ``self.__init__``. Initialize the eval model and MCTS utils. | |
""" | |
self._get_simulation_env() | |
if self._cfg.mcts_ctree: | |
import sys | |
sys.path.append('./LightZero/lzero/mcts/ctree/ctree_alphazero/build') | |
import mcts_alphazero | |
# TODO(pu): how to set proper num_simulations for evaluation | |
self._eval_mcts = mcts_alphazero.MCTS(self._cfg.mcts.max_moves, | |
min(800, self._cfg.mcts.num_simulations * 4), | |
self._cfg.mcts.pb_c_base, | |
self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha, | |
self._cfg.mcts.root_noise_weight, self.simulate_env) | |
else: | |
if self._cfg.sampled_algo: | |
from lzero.mcts.ptree.ptree_az_sampled import MCTS | |
else: | |
from lzero.mcts.ptree.ptree_az import MCTS | |
mcts_eval_config = copy.deepcopy(self._cfg.mcts) | |
# TODO(pu): how to set proper num_simulations for evaluation | |
mcts_eval_config.num_simulations = min(800, mcts_eval_config.num_simulations * 4) | |
self._eval_mcts = MCTS(mcts_eval_config, self.simulate_env) | |
self._eval_model = self._model | |
def _forward_eval(self, obs: Dict) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
The forward function for evaluating the current policy in eval mode, similar to ``self._forward_collect``. | |
Arguments: | |
- obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \ | |
corresponding obs in this timestep. | |
Returns: | |
- output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \ | |
the corresponding policy output in this timestep, including action, probs and so on. | |
""" | |
ready_env_id = list(obs.keys()) | |
init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id} | |
try: | |
katago_game_state = {env_id: obs[env_id]['katago_game_state'] for env_id in ready_env_id} | |
except Exception as e: | |
katago_game_state = {env_id: None for env_id in ready_env_id} | |
start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id} | |
output = {} | |
self._policy_model = self._eval_model | |
for env_id in ready_env_id: | |
# print('[eval] start_player_index={}'.format(start_player_index[env_id])) | |
# print('[eval] init_state=\n {}'.format(init_state[env_id])) | |
state_config_for_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id], | |
init_state=init_state[env_id], | |
katago_policy_init=False, | |
katago_game_state=katago_game_state[env_id])) | |
# try: | |
action, mcts_visit_count_probs = self._eval_mcts.get_next_action(state_config_for_env_reset, | |
self._policy_value_func, | |
1.0, False) | |
# except Exception as e: | |
# print(f"Exception occurred: {e}") | |
# print(f"Is self._policy_value_func callable? {callable(self._policy_value_func)}") | |
# raise # re-raise the exception | |
# print("="*20) | |
# print(action, mcts_visit_count_probs) | |
# print("="*20) | |
output[env_id] = { | |
'action': action, | |
'probs': mcts_visit_count_probs, | |
} | |
return output | |
def _get_simulation_env(self): | |
assert self._cfg.simulation_env_name in ['tictactoe', 'gomoku', 'go'], self._cfg.simulation_env_name | |
assert self._cfg.simulation_env_config_type in ['play_with_bot', 'self_play', 'league', | |
'sampled_play_with_bot'], self._cfg.simulation_env_config_type | |
if self._cfg.simulation_env_name == 'tictactoe': | |
from zoo.board_games.tictactoe.envs.tictactoe_env import TicTacToeEnv | |
if self._cfg.simulation_env_config_type == 'play_with_bot': | |
from zoo.board_games.tictactoe.config.tictactoe_alphazero_bot_mode_config import \ | |
tictactoe_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'self_play': | |
from zoo.board_games.tictactoe.config.tictactoe_alphazero_sp_mode_config import \ | |
tictactoe_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'league': | |
from zoo.board_games.tictactoe.config.tictactoe_alphazero_league_config import \ | |
tictactoe_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'sampled_play_with_bot': | |
from zoo.board_games.tictactoe.config.tictactoe_sampled_alphazero_bot_mode_config import \ | |
tictactoe_sampled_alphazero_config as tictactoe_alphazero_config | |
self.simulate_env = TicTacToeEnv(tictactoe_alphazero_config.env) | |
elif self._cfg.simulation_env_name == 'gomoku': | |
from zoo.board_games.gomoku.envs.gomoku_env import GomokuEnv | |
if self._cfg.simulation_env_config_type == 'play_with_bot': | |
from zoo.board_games.gomoku.config.gomoku_alphazero_bot_mode_config import gomoku_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'self_play': | |
from zoo.board_games.gomoku.config.gomoku_alphazero_sp_mode_config import gomoku_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'league': | |
from zoo.board_games.gomoku.config.gomoku_alphazero_league_config import gomoku_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'sampled_play_with_bot': | |
from zoo.board_games.gomoku.config.gomoku_sampled_alphazero_bot_mode_config import \ | |
gomoku_sampled_alphazero_config as gomoku_alphazero_config | |
self.simulate_env = GomokuEnv(gomoku_alphazero_config.env) | |
elif self._cfg.simulation_env_name == 'go': | |
from zoo.board_games.go.envs.go_env import GoEnv | |
if self._cfg.simulation_env_config_type == 'play_with_bot': | |
from zoo.board_games.go.config.go_alphazero_bot_mode_config import go_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'self_play': | |
from zoo.board_games.go.config.go_alphazero_sp_mode_config import go_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'league': | |
from zoo.board_games.go.config.go_alphazero_league_config import go_alphazero_config | |
elif self._cfg.simulation_env_config_type == 'sampled_play_with_bot': | |
from zoo.board_games.go.config.go_sampled_alphazero_bot_mode_config import \ | |
go_sampled_alphazero_config as go_alphazero_config | |
self.simulate_env = GoEnv(go_alphazero_config.env) | |
def _policy_value_func(self, environment: 'Environment') -> Tuple[Dict[int, np.ndarray], float]: | |
# Retrieve the legal actions in the current environment | |
legal_actions = environment.legal_actions | |
# Retrieve the current state and its scale from the environment | |
current_state, state_scale = environment.current_state() | |
# Convert the state scale to a PyTorch FloatTensor, adding a dimension to match the model's input requirements | |
state_scale_tensor = torch.from_numpy(state_scale).to( | |
device=self._device, dtype=torch.float | |
).unsqueeze(0) | |
# Compute action probabilities and state value for the current state using the policy model, without gradient computation | |
with torch.no_grad(): | |
action_probabilities, state_value = self._policy_model.compute_policy_value(state_scale_tensor) | |
# Extract the probabilities of the legal actions from the action probabilities, and convert the result to a numpy array | |
legal_action_probabilities = dict( | |
zip(legal_actions, action_probabilities.squeeze(0)[legal_actions].detach().cpu().numpy())) | |
# Return probabilities of the legal actions and the state value | |
return legal_action_probabilities, state_value.item() | |
def _monitor_vars_learn(self) -> List[str]: | |
""" | |
Overview: | |
Register the variables to be monitored in learn mode. The registered variables will be logged in | |
tensorboard according to the return value ``_forward_learn``. | |
""" | |
return super()._monitor_vars_learn() + [ | |
'cur_lr', 'total_loss', 'policy_loss', 'value_loss', 'entropy_loss', 'total_grad_norm_before_clip', | |
'collect_mcts_temperature' | |
] | |
def _process_transition(self, obs: Dict, model_output: Dict[str, torch.Tensor], timestep: namedtuple) -> Dict: | |
""" | |
Overview: | |
Generate the dict type transition (one timestep) data from policy learning. | |
""" | |
if 'katago_game_state' in obs.keys(): | |
del obs['katago_game_state'] | |
# if 'katago_game_state' in timestep.obs.keys(): | |
# del timestep.obs['katago_game_state'] | |
# Note: used in _foward_collect in alphazero_collector now | |
return { | |
'obs': obs, | |
'next_obs': timestep.obs, | |
'action': model_output['action'], | |
'root_sampled_actions': model_output['root_sampled_actions'], | |
'probs': model_output['probs'], | |
'reward': timestep.reward, | |
'done': timestep.done, | |
} | |
def _get_train_sample(self, data): | |
# be compatible with DI-engine Policy class | |
pass | |