Spaces:
Sleeping
Sleeping
import copy | |
import random | |
from typing import Union, Tuple, List, Dict | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ding.model import FCEncoder, ConvEncoder | |
from ding.reward_model.base_reward_model import BaseRewardModel | |
from ding.torch_utils.data_helper import to_tensor | |
from ding.utils import RunningMeanStd | |
from ding.utils import SequenceType, REWARD_MODEL_REGISTRY | |
from easydict import EasyDict | |
class RNDNetwork(nn.Module): | |
def __init__(self, obs_shape: Union[int, SequenceType], hidden_size_list: SequenceType) -> None: | |
super(RNDNetwork, self).__init__() | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.target = FCEncoder(obs_shape, hidden_size_list) | |
self.predictor = FCEncoder(obs_shape, hidden_size_list) | |
elif len(obs_shape) == 3: | |
self.target = ConvEncoder(obs_shape, hidden_size_list) | |
self.predictor = ConvEncoder(obs_shape, hidden_size_list) | |
else: | |
raise KeyError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own RND model". | |
format(obs_shape) | |
) | |
for param in self.target.parameters(): | |
param.requires_grad = False | |
def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
predict_feature = self.predictor(obs) | |
with torch.no_grad(): | |
target_feature = self.target(obs) | |
return predict_feature, target_feature | |
class RNDNetworkRepr(nn.Module): | |
""" | |
Overview: | |
The RND reward model class (https://arxiv.org/abs/1810.12894v1) with representation network. | |
""" | |
def __init__(self, obs_shape: Union[int, SequenceType], latent_shape: Union[int, SequenceType], hidden_size_list: SequenceType, | |
representation_network) -> None: | |
super(RNDNetworkRepr, self).__init__() | |
self.representation_network = representation_network | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.target = FCEncoder(obs_shape, hidden_size_list) | |
self.predictor = FCEncoder(latent_shape, hidden_size_list) | |
elif len(obs_shape) == 3: | |
self.target = ConvEncoder(obs_shape, hidden_size_list) | |
self.predictor = ConvEncoder(latent_shape, hidden_size_list) | |
else: | |
raise KeyError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own RND model". | |
format(obs_shape) | |
) | |
for param in self.target.parameters(): | |
param.requires_grad = False | |
def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
predict_feature = self.predictor(self.representation_network(obs)) | |
with torch.no_grad(): | |
target_feature = self.target(obs) | |
return predict_feature, target_feature | |
class RNDRewardModel(BaseRewardModel): | |
""" | |
Overview: | |
The RND reward model class (https://arxiv.org/abs/1810.12894v1) modified for MuZero. | |
Interface: | |
``estimate``, ``train``, ``collect_data``, ``clear_data``, \ | |
``__init__``, ``_train``, ``load_state_dict``, ``state_dict`` | |
Config: | |
== ==================== ===== ============= ======================================= ======================= | |
ID Symbol Type Default Value Description Other(Shape) | |
== ==================== ===== ============= ======================================= ======================= | |
1 ``type`` str rnd | Reward model register name, refer | | |
| to registry ``REWARD_MODEL_REGISTRY`` | | |
2 | ``intrinsic_`` str add | the intrinsic reward type | including add, new | |
| ``reward_type`` | | , or assign | |
3 | ``learning_rate`` float 0.001 | The step size of gradient descent | | |
4 | ``batch_size`` int 64 | Training batch size | | |
5 | ``hidden`` list [64, 64, | the MLP layer shape | | |
| ``_size_list`` (int) 128] | | | |
6 | ``update_per_`` int 100 | Number of updates per collect | | |
| ``collect`` | | | |
7 | ``input_norm`` bool True | Observation normalization | | |
8 | ``input_norm_`` int 0 | min clip value for obs normalization | | |
| ``clamp_min`` | |
9 | ``input_norm_`` int 1 | max clip value for obs normalization | | |
| ``clamp_max`` | |
10 | ``intrinsic_`` float 0.01 | the weight of intrinsic reward | r = w*r_i + r_e | |
``reward_weight`` | |
11 | ``extrinsic_`` bool True | Whether to normlize extrinsic reward | |
``reward_norm`` | |
12 | ``extrinsic_`` int 1 | the upper bound of the reward | |
``reward_norm_max`` | normalization | |
== ==================== ===== ============= ======================================= ======================= | |
""" | |
config = dict( | |
# (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``. | |
type='rnd', | |
# (str) The intrinsic reward type, including add, new, or assign. | |
intrinsic_reward_type='add', | |
# (float) The step size of gradient descent. | |
learning_rate=1e-3, | |
# (float) Batch size. | |
batch_size=64, | |
# (list(int)) Sequence of ``hidden_size`` of reward network. | |
# If obs.shape == 1, use MLP layers. | |
# If obs.shape == 3, use conv layer and final dense layer. | |
hidden_size_list=[64, 64, 128], | |
# (int) How many updates(iterations) to train after collector's one collection. | |
# Bigger "update_per_collect" means bigger off-policy. | |
# collect data -> update policy-> collect data -> ... | |
update_per_collect=100, | |
# (bool) Observation normalization: transform obs to mean 0, std 1. | |
input_norm=True, | |
# (int) Min clip value for observation normalization. | |
input_norm_clamp_min=-1, | |
# (int) Max clip value for observation normalization. | |
input_norm_clamp_max=1, | |
# Means the relative weight of RND intrinsic_reward. | |
# (float) The weight of intrinsic reward | |
# r = intrinsic_reward_weight * r_i + r_e. | |
intrinsic_reward_weight=0.01, | |
# (bool) Whether to normalize extrinsic reward. | |
# Normalize the reward to [0, extrinsic_reward_norm_max]. | |
extrinsic_reward_norm=True, | |
# (int) The upper bound of the reward normalization. | |
extrinsic_reward_norm_max=1, | |
) | |
def __init__(self, config: EasyDict, device: str = 'cpu', tb_logger: 'SummaryWriter' = None, | |
representation_network: nn.Module = None, target_representation_network: nn.Module = None, | |
use_momentum_representation_network: bool = True) -> None: # noqa | |
super(RNDRewardModel, self).__init__() | |
self.cfg = config | |
self.representation_network = representation_network | |
self.target_representation_network = target_representation_network | |
self.use_momentum_representation_network = use_momentum_representation_network | |
self.input_type = self.cfg.input_type | |
assert self.input_type in ['obs', 'latent_state', 'obs_latent_state'], self.input_type | |
self.device = device | |
assert self.device == "cpu" or self.device.startswith("cuda") | |
self.rnd_buffer_size = config.rnd_buffer_size | |
self.intrinsic_reward_type = self.cfg.intrinsic_reward_type | |
if tb_logger is None: | |
from tensorboardX import SummaryWriter | |
tb_logger = SummaryWriter('rnd_reward_model') | |
self.tb_logger = tb_logger | |
if self.input_type == 'obs': | |
self.input_shape = self.cfg.obs_shape | |
self.reward_model = RNDNetwork(self.input_shape, self.cfg.hidden_size_list).to(self.device) | |
elif self.input_type == 'latent_state': | |
self.input_shape = self.cfg.latent_state_dim | |
self.reward_model = RNDNetwork(self.input_shape, self.cfg.hidden_size_list).to(self.device) | |
elif self.input_type == 'obs_latent_state': | |
if self.use_momentum_representation_network: | |
self.reward_model = RNDNetworkRepr(self.cfg.obs_shape, self.cfg.latent_state_dim, self.cfg.hidden_size_list[0:-1], | |
self.target_representation_network).to(self.device) | |
else: | |
self.reward_model = RNDNetworkRepr(self.cfg.obs_shape, self.cfg.latent_state_dim, self.cfg.hidden_size_list[0:-1], | |
self.representation_network).to(self.device) | |
assert self.intrinsic_reward_type in ['add', 'new', 'assign'] | |
if self.input_type in ['obs', 'obs_latent_state']: | |
self.train_obs = [] | |
if self.input_type == 'latent_state': | |
self.train_latent_state = [] | |
self._optimizer_rnd = torch.optim.Adam( | |
self.reward_model.predictor.parameters(), lr=self.cfg.learning_rate, weight_decay=self.cfg.weight_decay | |
) | |
self._running_mean_std_rnd_reward = RunningMeanStd(epsilon=1e-4) | |
self._running_mean_std_rnd_obs = RunningMeanStd(epsilon=1e-4) | |
self.estimate_cnt_rnd = 0 | |
self.train_cnt_rnd = 0 | |
def _train_with_data_one_step(self) -> None: | |
if self.input_type in ['obs', 'obs_latent_state']: | |
train_data = random.sample(self.train_obs, self.cfg.batch_size) | |
elif self.input_type == 'latent_state': | |
train_data = random.sample(self.train_latent_state, self.cfg.batch_size) | |
train_data = torch.stack(train_data).to(self.device) | |
if self.cfg.input_norm: | |
# Note: observation normalization: transform obs to mean 0, std 1 | |
self._running_mean_std_rnd_obs.update(train_data.detach().cpu().numpy()) | |
normalized_train_data = (train_data - to_tensor(self._running_mean_std_rnd_obs.mean).to( | |
self.device)) / to_tensor( | |
self._running_mean_std_rnd_obs.std | |
).to(self.device) | |
train_data = torch.clamp(normalized_train_data, min=self.cfg.input_norm_clamp_min, | |
max=self.cfg.input_norm_clamp_max) | |
predict_feature, target_feature = self.reward_model(train_data) | |
loss = F.mse_loss(predict_feature, target_feature) | |
self.tb_logger.add_scalar('rnd_reward_model/rnd_mse_loss', loss, self.train_cnt_rnd) | |
self._optimizer_rnd.zero_grad() | |
loss.backward() | |
self._optimizer_rnd.step() | |
def train_with_data(self) -> None: | |
for _ in range(self.cfg.update_per_collect): | |
# for name, param in self.reward_model.named_parameters(): | |
# if param.grad is not None: | |
# print(f"{name}: {torch.isnan(param.grad).any()}, {torch.isinf(param.grad).any()}") | |
# print(f"{name}: grad min: {param.grad.min()}, grad max: {param.grad.max()}") | |
# # enable the following line to check whether there is nan or inf in the gradient. | |
# torch.autograd.set_detect_anomaly(True) | |
self._train_with_data_one_step() | |
self.train_cnt_rnd += 1 | |
def estimate(self, data: list) -> List[Dict]: | |
""" | |
Rewrite the reward key in each row of the data. | |
""" | |
# current_batch, target_batch = data | |
# obs_batch_orig, action_batch, mask_batch, indices, weights, make_time = current_batch | |
# target_reward, target_value, target_policy = target_batch | |
obs_batch_orig = data[0][0] | |
target_reward = data[1][0] | |
batch_size = obs_batch_orig.shape[0] | |
# reshape to (4, 2835, 6) | |
obs_batch_tmp = np.reshape(obs_batch_orig, (batch_size, self.cfg.obs_shape, 6)) | |
# reshape to (24, 2835) | |
obs_batch_tmp = np.reshape(obs_batch_tmp, (batch_size * 6, self.cfg.obs_shape)) | |
if self.input_type == 'latent_state': | |
with torch.no_grad(): | |
latent_state = self.representation_network(torch.from_numpy(obs_batch_tmp).to(self.device)) | |
input_data = latent_state | |
elif self.input_type in ['obs', 'obs_latent_state']: | |
input_data = to_tensor(obs_batch_tmp).to(self.device) | |
# NOTE: deepcopy reward part of data is very important, | |
# otherwise the reward of data in the replay buffer will be incorrectly modified. | |
target_reward_augmented = copy.deepcopy(target_reward) | |
target_reward_augmented = np.reshape(target_reward_augmented, (batch_size * 6, 1)) | |
if self.cfg.input_norm: | |
# add this line to avoid inplace operation on the original tensor. | |
input_data = input_data.clone() | |
# Note: observation normalization: transform obs to mean 0, std 1 | |
input_data = (input_data - to_tensor(self._running_mean_std_rnd_obs.mean | |
).to(self.device)) / to_tensor(self._running_mean_std_rnd_obs.std).to( | |
self.device) | |
input_data = torch.clamp(input_data, min=self.cfg.input_norm_clamp_min, max=self.cfg.input_norm_clamp_max) | |
else: | |
input_data = input_data | |
with torch.no_grad(): | |
predict_feature, target_feature = self.reward_model(input_data) | |
mse = F.mse_loss(predict_feature, target_feature, reduction='none').mean(dim=1) | |
self._running_mean_std_rnd_reward.update(mse.detach().cpu().numpy()) | |
# Note: according to the min-max normalization, transform rnd reward to [0,1] | |
rnd_reward = (mse - mse.min()) / (mse.max() - mse.min() + 1e-6) | |
# save the rnd_reward statistics into tb_logger | |
self.estimate_cnt_rnd += 1 | |
self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_max', rnd_reward.max(), self.estimate_cnt_rnd) | |
self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_mean', rnd_reward.mean(), self.estimate_cnt_rnd) | |
self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_min', rnd_reward.min(), self.estimate_cnt_rnd) | |
self.tb_logger.add_scalar('rnd_reward_model/rnd_reward_std', rnd_reward.std(), self.estimate_cnt_rnd) | |
rnd_reward = rnd_reward.to(self.device).unsqueeze(1).cpu().numpy() | |
if self.intrinsic_reward_type == 'add': | |
if self.cfg.extrinsic_reward_norm: | |
target_reward_augmented = target_reward_augmented / self.cfg.extrinsic_reward_norm_max + rnd_reward * self.cfg.intrinsic_reward_weight | |
else: | |
target_reward_augmented = target_reward_augmented + rnd_reward * self.cfg.intrinsic_reward_weight | |
elif self.intrinsic_reward_type == 'new': | |
if self.cfg.extrinsic_reward_norm: | |
target_reward_augmented = target_reward_augmented / self.cfg.extrinsic_reward_norm_max | |
elif self.intrinsic_reward_type == 'assign': | |
target_reward_augmented = rnd_reward | |
self.tb_logger.add_scalar('augmented_reward/reward_max', np.max(target_reward_augmented), self.estimate_cnt_rnd) | |
self.tb_logger.add_scalar('augmented_reward/reward_mean', np.mean(target_reward_augmented), | |
self.estimate_cnt_rnd) | |
self.tb_logger.add_scalar('augmented_reward/reward_min', np.min(target_reward_augmented), self.estimate_cnt_rnd) | |
self.tb_logger.add_scalar('augmented_reward/reward_std', np.std(target_reward_augmented), self.estimate_cnt_rnd) | |
# reshape to (target_reward_augmented.shape[0], 6, 1) | |
target_reward_augmented = np.reshape(target_reward_augmented, (batch_size, 6, 1)) | |
data[1][0] = target_reward_augmented | |
train_data_augmented = data | |
return train_data_augmented | |
def collect_data(self, data: list) -> None: | |
# TODO(pu): now we only collect the first 300 steps of each game segment. | |
collected_transitions = np.concatenate([game_segment.obs_segment[:300] for game_segment in data[0]], axis=0) | |
if self.input_type == 'latent_state': | |
with torch.no_grad(): | |
self.train_latent_state.extend( | |
self.representation_network(torch.from_numpy(collected_transitions).to(self.device))) | |
elif self.input_type == 'obs': | |
self.train_obs.extend(to_tensor(collected_transitions).to(self.device)) | |
elif self.input_type == 'obs_latent_state': | |
self.train_obs.extend(to_tensor(collected_transitions).to(self.device)) | |
def clear_old_data(self) -> None: | |
if self.input_type == 'latent_state': | |
if len(self.train_latent_state) >= self.cfg.rnd_buffer_size: | |
self.train_latent_state = self.train_latent_state[-self.cfg.rnd_buffer_size:] | |
elif self.input_type == 'obs': | |
if len(self.train_obs) >= self.cfg.rnd_buffer_size: | |
self.train_obs = self.train_obs[-self.cfg.rnd_buffer_size:] | |
elif self.input_type == 'obs_latent_state': | |
if len(self.train_obs) >= self.cfg.rnd_buffer_size: | |
self.train_obs = self.train_obs[-self.cfg.rnd_buffer_size:] | |
def state_dict(self) -> Dict: | |
return self.reward_model.state_dict() | |
def load_state_dict(self, _state_dict: Dict) -> None: | |
self.reward_model.load_state_dict(_state_dict) | |
def clear_data(self): | |
pass | |
def train(self): | |
pass | |