Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
# options={'PongNoFrameskip-v4', 'QbertNoFrameskip-v4', 'MsPacmanNoFrameskip-v4', 'SpaceInvadersNoFrameskip-v4', 'BreakoutNoFrameskip-v4', ...} | |
env_name = 'PongNoFrameskip-v4' | |
if env_name == 'PongNoFrameskip-v4': | |
action_space_size = 6 | |
elif env_name == 'QbertNoFrameskip-v4': | |
action_space_size = 6 | |
elif env_name == 'MsPacmanNoFrameskip-v4': | |
action_space_size = 9 | |
elif env_name == 'SpaceInvadersNoFrameskip-v4': | |
action_space_size = 6 | |
elif env_name == 'BreakoutNoFrameskip-v4': | |
action_space_size = 4 | |
# ============================================================== | |
# begin of the most frequently changed config specified by the user | |
# ============================================================== | |
# collector_env_num = 8 | |
# n_episode = 8 | |
# evaluator_env_num = 3 | |
# num_simulations = 50 | |
# update_per_collect = 1000 | |
# batch_size = 256 | |
# max_env_step = int(1e6) | |
# reanalyze_ratio = 0. | |
# chance_space_size = 4 | |
# debug config | |
collector_env_num = 1 | |
n_episode = 1 | |
evaluator_env_num = 1 | |
num_simulations = 5 | |
update_per_collect = 10 | |
batch_size = 2 | |
max_env_step = int(1e6) | |
reanalyze_ratio = 0. | |
chance_space_size = 4 | |
# ============================================================== | |
# end of the most frequently changed config specified by the user | |
# ============================================================== | |
atari_stochastic_muzero_config = dict( | |
exp_name= | |
f'data_stochastic_mz_ctree/{env_name[:-14]}_stochastic_muzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_chance{chance_space_size}_seed0', | |
env=dict( | |
stop_value=int(1e6), | |
env_name=env_name, | |
obs_shape=(4, 96, 96), | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
n_evaluator_episode=evaluator_env_num, | |
manager=dict(shared_memory=False, ), | |
), | |
policy=dict( | |
model=dict( | |
observation_shape=(4, 96, 96), | |
frame_stack_num=4, | |
action_space_size=action_space_size, | |
chance_space_size=chance_space_size, | |
downsample=True, | |
self_supervised_learning_loss=True, # default is False | |
discrete_action_encoding_type='one_hot', | |
norm_type='BN', | |
), | |
cuda=True, | |
gumbel_algo=False, | |
mcts_ctree=True, | |
env_type='not_board_games', | |
game_segment_length=400, | |
use_augmentation=True, | |
update_per_collect=update_per_collect, | |
batch_size=batch_size, | |
optim_type='Adam', | |
lr_piecewise_constant_decay=False, | |
learning_rate=3e-3, | |
num_simulations=num_simulations, | |
reanalyze_ratio=reanalyze_ratio, | |
ssl_loss_weight=2, # default is 0 | |
n_episode=n_episode, | |
eval_freq=int(2e3), | |
replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
), | |
) | |
atari_stochastic_muzero_config = EasyDict(atari_stochastic_muzero_config) | |
main_config = atari_stochastic_muzero_config | |
atari_stochastic_muzero_create_config = dict( | |
env=dict( | |
type='atari_lightzero', | |
import_names=['zoo.atari.envs.atari_lightzero_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict( | |
type='stochastic_muzero', | |
import_names=['lzero.policy.stochastic_muzero'], | |
), | |
) | |
atari_stochastic_muzero_create_config = EasyDict(atari_stochastic_muzero_create_config) | |
create_config = atari_stochastic_muzero_create_config | |
if __name__ == "__main__": | |
from lzero.entry import train_muzero | |
train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step) | |