Spaces:
Sleeping
Sleeping
import copy | |
import sys | |
from typing import List, Any | |
import gymnasium as gym | |
import numpy as np | |
from ding.envs import BaseEnv, BaseEnvTimestep | |
from ding.torch_utils import to_ndarray | |
from ding.utils import ENV_REGISTRY | |
from easydict import EasyDict | |
from zoo.atari.envs.atari_wrappers import wrap_lightzero | |
class AtariLightZeroEnv(BaseEnv): | |
""" | |
Overview: | |
AtariLightZeroEnv is a derived class from BaseEnv and represents the environment for the Atari LightZero game. | |
This class provides the necessary interfaces to interact with the environment, including reset, step, seed, | |
close, etc. and manages the environment's properties such as observation_space, action_space, and reward_space. | |
Properties: | |
cfg, _init_flag, channel_last, clip_rewards, episode_life, _env, _observation_space, _action_space, | |
_reward_space, obs, _eval_episode_return, has_reset, _seed, _dynamic_seed | |
""" | |
config = dict( | |
# (int) The number of environment instances used for data collection. | |
collector_env_num=8, | |
# (int) The number of environment instances used for evaluator. | |
evaluator_env_num=3, | |
# (int) The number of episodes to evaluate during each evaluation period. | |
n_evaluator_episode=3, | |
# (str) The name of the Atari game environment. | |
env_name='PongNoFrameskip-v4', | |
# (str) The type of the environment, here it's Atari. | |
env_type='Atari', | |
# (tuple) The shape of the observation space, which is a stacked frame of 4 images each of 96x96 pixels. | |
obs_shape=(4, 96, 96), | |
# (int) The maximum number of steps in each episode during data collection. | |
collect_max_episode_steps=int(1.08e5), | |
# (int) The maximum number of steps in each episode during evaluation. | |
eval_max_episode_steps=int(1.08e5), | |
# (bool) If True, the game is rendered in real-time. | |
render_mode_human=False, | |
# (bool) If True, a video of the game play is saved. | |
save_replay=False, | |
# replay_path (str or None): The path to save the replay video. If None, the replay will not be saved. | |
# Only effective when env_manager.type is 'base'. | |
replay_path=None, | |
# (bool) If set to True, the game screen is converted to grayscale, reducing the complexity of the observation space. | |
gray_scale=True, | |
# (int) The number of frames to skip between each action. Higher values result in faster simulation. | |
frame_skip=4, | |
# (bool) If True, the game ends when the agent loses a life, otherwise, the game only ends when all lives are lost. | |
episode_life=True, | |
# (bool) If True, the rewards are clipped to a certain range, usually between -1 and 1, to reduce variance. | |
clip_rewards=True, | |
# (bool) If True, the channels of the observation images are placed last (e.g., height, width, channels). | |
channel_last=True, | |
# (bool) If True, the pixel values of the game frames are scaled down to the range [0, 1]. | |
scale=True, | |
# (bool) If True, the game frames are preprocessed by cropping irrelevant parts and resizing to a smaller resolution. | |
warp_frame=True, | |
# (bool) If True, the game state is transformed into a string before being returned by the environment. | |
transform2string=False, | |
# (bool) If True, additional wrappers for the game environment are used. | |
game_wrapper=True, | |
# (dict) The configuration for the environment manager. If shared_memory is set to False, each environment instance | |
# runs in the same process as the trainer, otherwise, they run in separate processes. | |
manager=dict(shared_memory=False, ), | |
# (int) The value of the cumulative reward at which the training stops. | |
stop_value=int(1e6), | |
) | |
def default_config(cls: type) -> EasyDict: | |
""" | |
Overview: | |
Return the default configuration for the Atari LightZero environment. | |
Arguments: | |
- cls (:obj:`type`): The class AtariLightZeroEnv. | |
Returns: | |
- cfg (:obj:`EasyDict`): The default configuration dictionary. | |
""" | |
cfg = EasyDict(copy.deepcopy(cls.config)) | |
cfg.cfg_type = cls.__name__ + 'Dict' | |
return cfg | |
def __init__(self, cfg: EasyDict) -> None: | |
""" | |
Overview: | |
Initialize the Atari LightZero environment with the given configuration. | |
Arguments: | |
- cfg (:obj:`EasyDict`): The configuration dictionary. | |
""" | |
self.cfg = cfg | |
self._init_flag = False | |
self.channel_last = cfg.channel_last | |
self.clip_rewards = cfg.clip_rewards | |
self.episode_life = cfg.episode_life | |
def reset(self) -> dict: | |
""" | |
Overview: | |
Reset the environment and return the initial observation. | |
Returns: | |
- obs (:obj:`dict`): The initial observation after reset. | |
""" | |
if not self._init_flag: | |
# Create and return the wrapped environment for Atari LightZero. | |
self._env = wrap_lightzero(self.cfg, episode_life=self.cfg.episode_life, clip_rewards=self.cfg.clip_rewards) | |
self._observation_space = self._env.env.observation_space | |
self._action_space = self._env.env.action_space | |
self._reward_space = gym.spaces.Box( | |
low=self._env.env.reward_range[0], high=self._env.env.reward_range[1], shape=(1,), dtype=np.float32 | |
) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.env.seed(self._seed + np_seed) | |
elif hasattr(self, '_seed'): | |
self._env.env.seed(self._seed) | |
obs = self._env.reset() | |
self.obs = to_ndarray(obs) | |
self._eval_episode_return = 0. | |
obs = self.observe() | |
return obs | |
def step(self, action: int) -> BaseEnvTimestep: | |
""" | |
Overview: | |
Execute the given action and return the resulting environment timestep. | |
Arguments: | |
- action (:obj:`int`): The action to be executed. | |
Returns: | |
- timestep (:obj:`BaseEnvTimestep`): The environment timestep after executing the action. | |
""" | |
obs, reward, done, info = self._env.step(action) | |
self.obs = to_ndarray(obs) | |
self.reward = np.array(reward).astype(np.float32) | |
self._eval_episode_return += self.reward | |
observation = self.observe() | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
return BaseEnvTimestep(observation, self.reward, done, info) | |
def observe(self) -> dict: | |
""" | |
Overview: | |
Return the current observation along with the action mask and to_play flag. | |
Returns: | |
- observation (:obj:`dict`): The dictionary containing current observation, action mask, and to_play flag. | |
""" | |
observation = self.obs | |
if not self.channel_last: | |
# move the channel dim to the fist axis | |
# (96, 96, 3) -> (3, 96, 96) | |
observation = np.transpose(observation, (2, 0, 1)) | |
action_mask = np.ones(self._action_space.n, 'int8') | |
return {'observation': observation, 'action_mask': action_mask, 'to_play': -1} | |
def legal_actions(self): | |
return np.arange(self._action_space.n) | |
def random_action(self): | |
action_list = self.legal_actions | |
return np.random.choice(action_list) | |
def close(self) -> None: | |
""" | |
Close the environment, and set the initialization flag to False. | |
""" | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
""" | |
Set the seed for the environment's random number generator. Can handle both static and dynamic seeding. | |
""" | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def observation_space(self) -> gym.spaces.Space: | |
""" | |
Property to access the observation space of the environment. | |
""" | |
return self._observation_space | |
def action_space(self) -> gym.spaces.Space: | |
""" | |
Property to access the action space of the environment. | |
""" | |
return self._action_space | |
def reward_space(self) -> gym.spaces.Space: | |
""" | |
Property to access the reward space of the environment. | |
""" | |
return self._reward_space | |
def __repr__(self) -> str: | |
return "LightZero Atari Env({})".format(self.cfg.env_name) | |
def create_collector_env_cfg(cfg: dict) -> List[dict]: | |
collector_env_num = cfg.pop('collector_env_num') | |
cfg = copy.deepcopy(cfg) | |
cfg.max_episode_steps = cfg.collect_max_episode_steps | |
cfg.episode_life = True | |
cfg.clip_rewards = True | |
return [cfg for _ in range(collector_env_num)] | |
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: | |
evaluator_env_num = cfg.pop('evaluator_env_num') | |
cfg = copy.deepcopy(cfg) | |
cfg.max_episode_steps = cfg.eval_max_episode_steps | |
cfg.episode_life = False | |
cfg.clip_rewards = False | |
return [cfg for _ in range(evaluator_env_num)] | |