Spaces:
Sleeping
Sleeping
""" | |
Adapt the Go environment in PettingZoo (https://github.com/Farama-Foundation/PettingZoo) to the BaseEnv interface. | |
""" | |
import os | |
import sys | |
import numpy as np | |
import pygame | |
from ding.envs import BaseEnv, BaseEnvTimestep | |
from ding.utils import ENV_REGISTRY | |
from gymnasium import spaces | |
from pettingzoo.classic.go import coords, go | |
from pettingzoo.utils.agent_selector import agent_selector | |
def get_image(path): | |
from os import path as os_path | |
import pygame | |
cwd = os_path.dirname(__file__) | |
image = pygame.image.load(cwd + '/' + path) | |
sfc = pygame.Surface(image.get_size(), flags=pygame.SRCALPHA) | |
sfc.blit(image, (0, 0)) | |
return sfc | |
class GoEnv(BaseEnv): | |
def __init__(self, board_size: int = 19, komi: float = 7.5): | |
# board_size: a int, representing the board size (board has a board_size x board_size shape) | |
# komi: a float, representing points given to the second player. | |
self._overwrite_go_global_variables(board_size=board_size) | |
self._komi = komi | |
self.agents = ['black_0', 'white_0'] | |
self.num_agents = len(self.agents) | |
self.possible_agents = self.agents[:] | |
self.has_reset = False | |
self.screen = None | |
self._observation_space = self._convert_to_dict( | |
[ | |
spaces.Dict( | |
{ | |
'observation': spaces.Box(low=0, high=1, shape=(self._N, self._N, 17), dtype=bool), | |
'action_mask': spaces.Box(low=0, high=1, shape=((self._N * self._N) + 1, ), dtype=np.int8) | |
} | |
) for _ in range(self.num_agents) | |
] | |
) | |
self._action_space = self._convert_to_dict( | |
[spaces.Discrete(self._N * self._N + 1) for _ in range(self.num_agents)] | |
) | |
self._agent_selector = agent_selector(self.agents) | |
self.board_history = np.zeros((self._N, self._N, 16), dtype=bool) | |
def _overwrite_go_global_variables(self, board_size: int): | |
self._N = board_size | |
go.N = self._N | |
go.ALL_COORDS = [(i, j) for i in range(self._N) for j in range(self._N)] | |
go.EMPTY_BOARD = np.zeros([self._N, self._N], dtype=np.int8) | |
go.NEIGHBORS = { | |
(x, y): list(filter(self._check_bounds, [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)])) | |
for x, y in go.ALL_COORDS | |
} | |
go.DIAGONALS = { | |
(x, y): list(filter(self._check_bounds, [(x + 1, y + 1), (x + 1, y - 1), (x - 1, y + 1), (x - 1, y - 1)])) | |
for x, y in go.ALL_COORDS | |
} | |
return | |
def _check_bounds(self, c): | |
return 0 <= c[0] < self._N and 0 <= c[1] < self._N | |
def _encode_player_plane(self, agent): | |
if agent == self.possible_agents[0]: | |
return np.zeros([self._N, self._N], dtype=bool) | |
else: | |
return np.ones([self._N, self._N], dtype=bool) | |
def _encode_board_planes(self, agent): | |
agent_factor = go.BLACK if agent == self.possible_agents[0] else go.WHITE | |
current_agent_plane_idx = np.where(self._go.board == agent_factor) | |
opponent_agent_plane_idx = np.where(self._go.board == -agent_factor) | |
current_agent_plane = np.zeros([self._N, self._N], dtype=bool) | |
opponent_agent_plane = np.zeros([self._N, self._N], dtype=bool) | |
current_agent_plane[current_agent_plane_idx] = 1 | |
opponent_agent_plane[opponent_agent_plane_idx] = 1 | |
return current_agent_plane, opponent_agent_plane | |
def _int_to_name(self, ind): | |
return self.possible_agents[ind] | |
def _name_to_int(self, name): | |
return self.possible_agents.index(name) | |
def _convert_to_dict(self, list_of_list): | |
return dict(zip(self.possible_agents, list_of_list)) | |
def _encode_legal_actions(self, actions): | |
return np.where(actions == 1)[0] | |
def _encode_rewards(self, result): | |
return [1, -1] if result == 1 else [-1, 1] | |
def current_player(self): | |
return self.current_player_index | |
def to_play(self): | |
return self.current_player_index | |
def reset(self): | |
self.has_reset = True | |
self._go = go.Position(board=None, komi=self._komi) | |
self.agents = self.possible_agents[:] | |
self._agent_selector.reinit(self.agents) | |
self.agent_selection = self._agent_selector.reset() | |
self._cumulative_rewards = self._convert_to_dict(np.array([0.0, 0.0])) | |
self.rewards = self._convert_to_dict(np.array([0.0, 0.0])) | |
self.dones = self._convert_to_dict([False for _ in range(self.num_agents)]) | |
self.infos = self._convert_to_dict([{} for _ in range(self.num_agents)]) | |
self.next_legal_moves = self._encode_legal_actions(self._go.all_legal_moves()) | |
self._last_obs = self.observe(self.agents[0]) | |
self.board_history = np.zeros((self._N, self._N, 16), dtype=bool) | |
self.current_player_index = 0 | |
for agent, reward in self.rewards.items(): | |
self._cumulative_rewards[agent] += reward | |
agent = self.agent_selection | |
current_index = self.agents.index(agent) | |
self.current_player_index = current_index | |
obs = self.observe(agent) | |
return obs | |
def observe(self, agent): | |
player_plane = self._encode_player_plane(agent) | |
observation = np.dstack((self.board_history, player_plane)) | |
legal_moves = self.next_legal_moves if agent == self.agent_selection else [] | |
action_mask = np.zeros((self._N * self._N) + 1, 'int8') | |
for i in legal_moves: | |
action_mask[i] = 1 | |
return {'observation': observation, 'action_mask': action_mask} | |
def set_game_result(self, result_val): | |
for i, name in enumerate(self.agents): | |
self.dones[name] = True | |
result_coef = 1 if i == 0 else -1 | |
self.rewards[name] = result_val * result_coef | |
self.infos[name] = {'legal_moves': []} | |
def step(self, action): | |
if self.dones[self.agent_selection]: | |
return self._was_done_step(action) | |
self._go = self._go.play_move(coords.from_flat(action)) | |
self._last_obs = self.observe(self.agent_selection) | |
current_agent_plane, opponent_agent_plane = self._encode_board_planes(self.agent_selection) | |
self.board_history = np.dstack((current_agent_plane, opponent_agent_plane, self.board_history[:, :, :-2])) | |
next_player = self._agent_selector.next() | |
current_agent = next_player # 'black_0', 'white_0' | |
current_index = self.agents.index(current_agent) # 0, 1 | |
self.current_player_index = current_index | |
if self._go.is_game_over(): | |
self.dones = self._convert_to_dict([True for _ in range(self.num_agents)]) | |
self.rewards = self._convert_to_dict(self._encode_rewards(self._go.result())) | |
self.next_legal_moves = [self._N * self._N] | |
else: | |
self.next_legal_moves = self._encode_legal_actions(self._go.all_legal_moves()) | |
self.agent_selection = next_player if next_player else self._agent_selector.next() | |
# self._accumulate_rewards() | |
for agent, reward in self.rewards.items(): | |
self._cumulative_rewards[agent] += reward | |
# observation, reward, done, info = env.last() | |
agent = self.agent_selection | |
current_index = self.agents.index(agent) | |
self.current_player_index = current_index | |
observation = self.observe(agent) | |
return BaseEnvTimestep(observation, self._cumulative_rewards[agent], self.dones[agent], self.infos[agent]) | |
def legal_actions(self): | |
pass | |
def legal_moves(self): | |
if self._go.is_game_over(): | |
self.dones = self._convert_to_dict([True for _ in range(self.num_agents)]) | |
self.rewards = self._convert_to_dict(self._encode_rewards(self._go.result())) | |
self.next_legal_moves = [self._N * self._N] | |
else: | |
self.next_legal_moves = self._encode_legal_actions(self._go.all_legal_moves()) | |
return self.next_legal_moves | |
def random_action(self): | |
action_list = self.legal_moves() | |
return np.random.choice(action_list) | |
def bot_action(self): | |
# TODO | |
pass | |
def human_to_action(self): | |
""" | |
Overview: | |
For multiplayer games, ask the user for a legal action | |
and return the corresponding action number. | |
Returns: | |
An integer from the action space. | |
""" | |
# print(self.board) | |
while True: | |
try: | |
print(f"Current available actions for the player {self.to_play()} are:{self.legal_moves()}") | |
choice = int(input(f"Enter the index of next move for the player {self.to_play()}: ")) | |
if choice in self.legal_moves(): | |
break | |
except KeyboardInterrupt: | |
sys.exit(0) | |
except Exception as e: | |
print("Wrong input, try again") | |
return choice | |
def render(self, mode='human'): | |
screen_width = 1026 | |
screen_height = 1026 | |
if self.screen is None: | |
if mode == "human": | |
pygame.init() | |
self.screen = pygame.display.set_mode((screen_width, screen_height)) | |
else: | |
self.screen = pygame.Surface((screen_width, screen_height)) | |
if mode == "human": | |
pygame.event.get() | |
size = go.N | |
# Load and scale all of the necessary images | |
tile_size = (screen_width) / size | |
black_stone = get_image(os.path.join('../img', 'GoBlackPiece.png')) | |
black_stone = pygame.transform.scale(black_stone, (int(tile_size * (5 / 6)), int(tile_size * (5 / 6)))) | |
white_stone = get_image(os.path.join('../img', 'GoWhitePiece.png')) | |
white_stone = pygame.transform.scale(white_stone, (int(tile_size * (5 / 6)), int(tile_size * (5 / 6)))) | |
tile_img = get_image(os.path.join('../img', 'GO_Tile0.png')) | |
tile_img = pygame.transform.scale(tile_img, ((int(tile_size * (7 / 6))), int(tile_size * (7 / 6)))) | |
# blit board tiles | |
for i in range(1, size - 1): | |
for j in range(1, size - 1): | |
self.screen.blit(tile_img, ((i * (tile_size)), int(j) * (tile_size))) | |
for i in range(1, 9): | |
tile_img = get_image(os.path.join('../img', 'GO_Tile' + str(i) + '.png')) | |
tile_img = pygame.transform.scale(tile_img, ((int(tile_size * (7 / 6))), int(tile_size * (7 / 6)))) | |
for j in range(1, size - 1): | |
if i == 1: | |
self.screen.blit(tile_img, (0, int(j) * (tile_size))) | |
elif i == 2: | |
self.screen.blit(tile_img, ((int(j) * (tile_size)), 0)) | |
elif i == 3: | |
self.screen.blit(tile_img, ((size - 1) * (tile_size), int(j) * (tile_size))) | |
elif i == 4: | |
self.screen.blit(tile_img, ((int(j) * (tile_size)), (size - 1) * (tile_size))) | |
if i == 5: | |
self.screen.blit(tile_img, (0, 0)) | |
elif i == 6: | |
self.screen.blit(tile_img, ((size - 1) * (tile_size), 0)) | |
elif i == 7: | |
self.screen.blit(tile_img, ((size - 1) * (tile_size), (size - 1) * (tile_size))) | |
elif i == 8: | |
self.screen.blit(tile_img, (0, (size - 1) * (tile_size))) | |
offset = tile_size * (1 / 6) | |
# Blit the necessary chips and their positions | |
for i in range(0, size): | |
for j in range(0, size): | |
if self._go.board[i][j] == go.BLACK: | |
self.screen.blit(black_stone, ((i * (tile_size) + offset), int(j) * (tile_size) + offset)) | |
elif self._go.board[i][j] == go.WHITE: | |
self.screen.blit(white_stone, ((i * (tile_size) + offset), int(j) * (tile_size) + offset)) | |
if mode == "human": | |
pygame.display.update() | |
observation = np.array(pygame.surfarray.pixels3d(self.screen)) | |
return np.transpose(observation, axes=(1, 0, 2)) if mode == "rgb_array" else None | |
def observation_space(self): | |
return self.observation_spaces | |
def action_space(self): | |
return self._action_space | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def close(self) -> None: | |
pass | |
def __repr__(self) -> str: | |
return "LightZero Go Env" | |