Spaces:
Sleeping
Sleeping
import copy | |
import os | |
from datetime import datetime | |
from typing import List, Optional, Dict | |
import gymnasium as gym | |
import numpy as np | |
from ding.envs import BaseEnvTimestep | |
from ding.envs import ObsPlusPrevActRewWrapper | |
from ding.envs.common import affine_transform | |
from ding.torch_utils import to_ndarray | |
from ding.utils import ENV_REGISTRY | |
from easydict import EasyDict | |
from zoo.classic_control.cartpole.envs.cartpole_lightzero_env import CartPoleEnv | |
class LunarLanderEnv(CartPoleEnv): | |
""" | |
Overview: | |
The LunarLander Environment class for LightZero algo.. This class is a wrapper of the gym LunarLander environment, with additional | |
functionalities like replay saving and seed setting. The class is registered in ENV_REGISTRY with the key 'lunarlander'. | |
""" | |
config = dict( | |
# (str) The gym environment name. | |
env_name="LunarLander-v2", | |
# (bool) If True, save the replay as a gif file. | |
save_replay_gif=False, | |
# (str or None) The path to save the replay gif. If None, the replay gif will not be saved. | |
replay_path_gif=None, | |
# replay_path (str or None): The path to save the replay video. If None, the replay will not be saved. | |
# Only effective when env_manager.type is 'base'. | |
replay_path=None, | |
# (bool) If True, the action will be scaled. | |
act_scale=True, | |
# (int) The maximum number of steps for each episode during collection. | |
collect_max_episode_steps=int(1.08e5), | |
# (int) The maximum number of steps for each episode during evaluation. | |
eval_max_episode_steps=int(1.08e5), | |
) | |
def default_config(cls: type) -> EasyDict: | |
""" | |
Overview: | |
Return the default configuration of the class. | |
Returns: | |
- cfg (:obj:`EasyDict`): Default configuration dict. | |
""" | |
cfg = EasyDict(copy.deepcopy(cls.config)) | |
cfg.cfg_type = cls.__name__ + 'Dict' | |
return cfg | |
def __init__(self, cfg: dict) -> None: | |
""" | |
Overview: | |
Initialize the LunarLander environment. | |
Arguments: | |
- cfg (:obj:`dict`): Configuration dict. The dict should include keys like 'env_name', 'replay_path', etc. | |
""" | |
self._cfg = cfg | |
self._init_flag = False | |
# env_name options = {'LunarLander-v2', 'LunarLanderContinuous-v2'} | |
self._env_name = cfg.env_name | |
self._replay_path = cfg.replay_path | |
self._replay_path_gif = cfg.replay_path_gif | |
self._save_replay_gif = cfg.save_replay_gif | |
self._save_replay_count = 0 | |
if 'Continuous' in self._env_name: | |
self._act_scale = cfg.act_scale # act_scale only works in continuous env | |
else: | |
self._act_scale = False | |
def reset(self) -> Dict[str, np.ndarray]: | |
""" | |
Overview: | |
Reset the environment and return the initial observation. | |
Returns: | |
- obs (:obj:`np.ndarray`): The initial observation after resetting. | |
""" | |
if not self._init_flag: | |
self._env = gym.make(self._cfg.env_name, render_mode="rgb_array") | |
if self._replay_path is not None: | |
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") | |
video_name = f'{self._env.spec.id}-video-{timestamp}' | |
self._env = gym.wrappers.RecordVideo( | |
self._env, | |
video_folder=self._replay_path, | |
episode_trigger=lambda episode_id: True, | |
name_prefix=video_name | |
) | |
if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward: | |
self._env = ObsPlusPrevActRewWrapper(self._env) | |
self._observation_space = self._env.observation_space | |
self._action_space = self._env.action_space | |
self._reward_space = gym.spaces.Box( | |
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32 | |
) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._seed = self._seed + np_seed | |
obs, _ = self._env.reset(seed=self._seed) # using the reset method of Gymnasium env | |
elif hasattr(self, '_seed'): | |
obs, _ = self._env.reset(seed=self._seed) | |
else: | |
obs, _ = self._env.reset() | |
obs = to_ndarray(obs) | |
self._eval_episode_return = 0. | |
if self._save_replay_gif: | |
self._frames = [] | |
if 'Continuous' not in self._env_name: | |
action_mask = np.ones(4, 'int8') | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
else: | |
action_mask = None | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
return obs | |
def step(self, action: np.ndarray) -> BaseEnvTimestep: | |
""" | |
Overview: | |
Take a step in the environment with the given action. | |
Arguments: | |
- action (:obj:`np.ndarray`): The action to be taken. | |
Returns: | |
- timestep (:obj:`BaseEnvTimestep`): The timestep information including observation, reward, done flag, and info. | |
""" | |
if action.shape == (1,): | |
action = action.item() # 0-dim array | |
if self._act_scale: | |
action = affine_transform(action, min_val=-1, max_val=1) | |
if self._save_replay_gif: | |
self._frames.append(self._env.render()) | |
obs, rew, terminated, truncated, info = self._env.step(action) | |
done = terminated or truncated | |
if 'Continuous' not in self._env_name: | |
action_mask = np.ones(4, 'int8') | |
# TODO: test the performance of varied_action_space. | |
# action_mask[0] = 0 | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
else: | |
action_mask = None | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
self._eval_episode_return += rew | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
if self._save_replay_gif: | |
if not os.path.exists(self._replay_path_gif): | |
os.makedirs(self._replay_path_gif) | |
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") | |
path = os.path.join( | |
self._replay_path_gif, | |
'{}_episode_{}_seed{}_{}.gif'.format(self._env_name, self._save_replay_count, self._seed, timestamp) | |
) | |
self.display_frames_as_gif(self._frames, path) | |
print(f'save episode {self._save_replay_count} in {self._replay_path_gif}!') | |
self._save_replay_count += 1 | |
obs = to_ndarray(obs) | |
rew = to_ndarray([rew]).astype(np.float32) # wrapped to be transferred to a array with shape (1,) | |
return BaseEnvTimestep(obs, rew, done, info) | |
def legal_actions(self) -> np.ndarray: | |
""" | |
Overview: | |
Get the legal actions in the environment. | |
Returns: | |
- legal_actions (:obj:`np.ndarray`): An array of legal actions. | |
""" | |
return np.arange(self._action_space.n) | |
def display_frames_as_gif(frames: list, path: str) -> None: | |
import imageio | |
imageio.mimsave(path, frames, fps=20) | |
def random_action(self) -> np.ndarray: | |
random_action = self.action_space.sample() | |
if isinstance(random_action, np.ndarray): | |
pass | |
elif isinstance(random_action, int): | |
random_action = to_ndarray([random_action], dtype=np.int64) | |
return random_action | |
def __repr__(self) -> str: | |
return "LightZero LunarLander Env." | |
def create_collector_env_cfg(cfg: dict) -> List[dict]: | |
""" | |
Overview: | |
Create a list of environment configurations for the collector. | |
Arguments: | |
- cfg (:obj:`dict`): The base configuration dict. | |
Returns: | |
- cfgs (:obj:`List[dict]`): The list of environment configurations. | |
""" | |
collector_env_num = cfg.pop('collector_env_num') | |
cfg = copy.deepcopy(cfg) | |
cfg.max_episode_steps = cfg.collect_max_episode_steps | |
return [cfg for _ in range(collector_env_num)] | |
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: | |
""" | |
Overview: | |
Create a list of environment configurations for the evaluator. | |
Arguments: | |
- cfg (:obj:`dict`): The base configuration dict. | |
Returns: | |
- cfgs (:obj:`List[dict]`): The list of environment configurations. | |
""" | |
evaluator_env_num = cfg.pop('evaluator_env_num') | |
cfg = copy.deepcopy(cfg) | |
cfg.max_episode_steps = cfg.eval_max_episode_steps | |
return [cfg for _ in range(evaluator_env_num)] | |