Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
# options={'memory_len/0', 'memory_len/9', 'memory_len/17', 'memory_len/20', 'memory_len/22', 'memory_size/0', 'bsuite_swingup/0', 'bandit_noise/0'} | |
env_name = 'memory_len/9' | |
if env_name in ['memory_len/0', 'memory_len/9', 'memory_len/17', 'memory_len/20', 'memory_len/22']: | |
# the memory_length of above envs is 1, 10, 50, 80, 100, respectively. | |
action_space_size = 2 | |
observation_shape = 3 | |
elif env_name in ['bsuite_swingup/0']: | |
action_space_size = 3 | |
observation_shape = 8 | |
elif env_name == 'bandit_noise/0': | |
action_space_size = 11 | |
observation_shape = 1 | |
elif env_name in ['memory_size/0']: | |
action_space_size = 2 | |
observation_shape = 3 | |
else: | |
raise NotImplementedError | |
# ============================================================== | |
# begin of the most frequently changed config specified by the user | |
# ============================================================== | |
seed = 0 | |
collector_env_num = 8 | |
n_episode = 8 | |
evaluator_env_num = 3 | |
continuous_action_space = False | |
K = 2 # num_of_sampled_actions | |
num_simulations = 50 | |
update_per_collect = 100 | |
batch_size = 256 | |
max_env_step = int(5e5) | |
reanalyze_ratio = 0. | |
# ============================================================== | |
# end of the most frequently changed config specified by the user | |
# ============================================================== | |
bsuite_sampled_efficientzero_config = dict( | |
exp_name= | |
f'data_sez_ctree/bsuite_sampled_efficientzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed{seed}', | |
env=dict( | |
env_name=env_name, | |
stop_value=int(1e6), | |
continuous=False, | |
manually_discretization=False, | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
n_evaluator_episode=evaluator_env_num, | |
manager=dict(shared_memory=False, ), | |
), | |
policy=dict( | |
model=dict( | |
observation_shape=observation_shape, | |
action_space_size=action_space_size, | |
continuous_action_space=continuous_action_space, | |
num_of_sampled_actions=K, | |
model_type='mlp', | |
lstm_hidden_size=128, | |
latent_state_dim=128, | |
discrete_action_encoding_type='one_hot', | |
norm_type='BN', | |
), | |
cuda=True, | |
env_type='not_board_games', | |
game_segment_length=50, | |
update_per_collect=update_per_collect, | |
batch_size=batch_size, | |
optim_type='Adam', | |
lr_piecewise_constant_decay=False, | |
learning_rate=0.003, | |
num_simulations=num_simulations, | |
reanalyze_ratio=reanalyze_ratio, | |
n_episode=n_episode, | |
eval_freq=int(2e2), | |
replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
), | |
) | |
bsuite_sampled_efficientzero_config = EasyDict(bsuite_sampled_efficientzero_config) | |
main_config = bsuite_sampled_efficientzero_config | |
bsuite_sampled_efficientzero_create_config = dict( | |
env=dict( | |
type='bsuite_lightzero', | |
import_names=['zoo.bsuite.envs.bsuite_lightzero_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict( | |
type='sampled_efficientzero', | |
import_names=['lzero.policy.sampled_efficientzero'], | |
), | |
collector=dict( | |
type='episode_muzero', | |
import_names=['lzero.worker.muzero_collector'], | |
) | |
) | |
bsuite_sampled_efficientzero_create_config = EasyDict(bsuite_sampled_efficientzero_create_config) | |
create_config = bsuite_sampled_efficientzero_create_config | |
if __name__ == "__main__": | |
from lzero.entry import train_muzero | |
train_muzero([main_config, create_config], seed=seed, max_env_step=max_env_step) | |