Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
# ============================================================== | |
# begin of the most frequently changed config specified by the user | |
# ============================================================== | |
collector_env_num = 8 | |
n_episode = 8 | |
evaluator_env_num = 3 | |
num_simulations = 25 | |
update_per_collect = 100 | |
batch_size = 256 | |
max_env_step = int(1e5) | |
reanalyze_ratio = 0. | |
# ============================================================== | |
# end of the most frequently changed config specified by the user | |
# ============================================================== | |
cartpole_efficientzero_config = dict( | |
exp_name= | |
f'data_ez_ctree/cartpole_efficientzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed0', | |
env=dict( | |
env_name='CartPole-v0', | |
continuous=False, | |
manually_discretization=False, | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
n_evaluator_episode=evaluator_env_num, | |
manager=dict(shared_memory=False, ), | |
), | |
policy=dict( | |
model=dict( | |
observation_shape=4, | |
action_space_size=2, | |
model_type='mlp', | |
lstm_hidden_size=128, | |
latent_state_dim=128, | |
discrete_action_encoding_type='one_hot', | |
norm_type='BN', | |
), | |
cuda=True, | |
env_type='not_board_games', | |
game_segment_length=50, | |
update_per_collect=update_per_collect, | |
batch_size=batch_size, | |
optim_type='Adam', | |
lr_piecewise_constant_decay=False, | |
learning_rate=0.003, | |
num_simulations=num_simulations, | |
reanalyze_ratio=reanalyze_ratio, | |
n_episode=n_episode, | |
eval_freq=int(2e2), | |
replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
), | |
) | |
cartpole_efficientzero_config = EasyDict(cartpole_efficientzero_config) | |
main_config = cartpole_efficientzero_config | |
cartpole_efficientzero_create_config = dict( | |
env=dict( | |
type='cartpole_lightzero', | |
import_names=['zoo.classic_control.cartpole.envs.cartpole_lightzero_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict( | |
type='efficientzero', | |
import_names=['lzero.policy.efficientzero'], | |
), | |
) | |
cartpole_efficientzero_create_config = EasyDict(cartpole_efficientzero_create_config) | |
create_config = cartpole_efficientzero_create_config | |
if __name__ == "__main__": | |
# Users can use different train entry by specifying the entry_type. | |
entry_type = "train_muzero" # options={"train_muzero", "train_muzero_with_gym_env"} | |
if entry_type == "train_muzero": | |
from lzero.entry import train_muzero | |
elif entry_type == "train_muzero_with_gym_env": | |
""" | |
The ``train_muzero_with_gym_env`` entry means that the environment used in the training process is generated by wrapping the original gym environment with LightZeroEnvWrapper. | |
Users can refer to lzero/envs/wrappers for more details. | |
""" | |
from lzero.entry import train_muzero_with_gym_env as train_muzero | |
train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step) | |