Spaces:
Sleeping
Sleeping
import copy | |
from datetime import datetime | |
from typing import Union, Optional, Dict | |
import gymnasium as gym | |
import numpy as np | |
from ding.envs import BaseEnv, BaseEnvTimestep | |
from ding.envs import ObsPlusPrevActRewWrapper | |
from ding.torch_utils import to_ndarray | |
from ding.utils import ENV_REGISTRY | |
from easydict import EasyDict | |
class CartPoleEnv(BaseEnv): | |
""" | |
LightZero version of the classic CartPole environment. This class includes methods for resetting, closing, and | |
stepping through the environment, as well as seeding for reproducibility, saving replay videos, and generating random | |
actions. It also includes properties for accessing the observation space, action space, and reward space of the | |
environment. | |
""" | |
config = dict( | |
# env_name (str): The name of the environment. | |
env_name="CartPole-v0", | |
# replay_path (str): The path to save the replay video. If None, the replay will not be saved. | |
# Only effective when env_manager.type is 'base'. | |
replay_path=None, | |
) | |
def default_config(cls: type) -> EasyDict: | |
cfg = EasyDict(copy.deepcopy(cls.config)) | |
cfg.cfg_type = cls.__name__ + 'Dict' | |
return cfg | |
def __init__(self, cfg: dict = {}) -> None: | |
""" | |
Initialize the environment with a configuration dictionary. Sets up spaces for observations, actions, and rewards. | |
""" | |
self._cfg = cfg | |
self._init_flag = False | |
self._continuous = False | |
self._replay_path = cfg.replay_path | |
self._observation_space = gym.spaces.Box( | |
low=np.array([-4.8, float("-inf"), -0.42, float("-inf")]), | |
high=np.array([4.8, float("inf"), 0.42, float("inf")]), | |
shape=(4,), | |
dtype=np.float32 | |
) | |
self._action_space = gym.spaces.Discrete(2) | |
self._action_space.seed(0) # default seed | |
self._reward_space = gym.spaces.Box(low=0.0, high=1.0, shape=(1,), dtype=np.float32) | |
def reset(self) -> Dict[str, np.ndarray]: | |
""" | |
Reset the environment. If it hasn't been initialized yet, this method also handles that. It also handles seeding | |
if necessary. Returns the first observation. | |
""" | |
if not self._init_flag: | |
self._env = gym.make('CartPole-v0', render_mode="rgb_array") | |
if self._replay_path is not None: | |
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") | |
video_name = f'{self._env.spec.id}-video-{timestamp}' | |
self._env = gym.wrappers.RecordVideo( | |
self._env, | |
video_folder=self._replay_path, | |
episode_trigger=lambda episode_id: True, | |
name_prefix=video_name | |
) | |
if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward: | |
self._env = ObsPlusPrevActRewWrapper(self._env) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._seed = self._seed + np_seed | |
self._action_space.seed(self._seed) | |
obs, _ = self._env.reset(seed=self._seed) | |
elif hasattr(self, '_seed'): | |
self._action_space.seed(self._seed) | |
obs, _ = self._env.reset(seed=self._seed) | |
else: | |
obs, _ = self._env.reset() | |
self._observation_space = self._env.observation_space | |
self._eval_episode_return = 0 | |
obs = to_ndarray(obs) | |
action_mask = np.ones(self.action_space.n, 'int8') | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
return obs | |
def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep: | |
""" | |
Overview: | |
Perform a step in the environment using the provided action, and return the next state of the environment. | |
The next state is encapsulated in a BaseEnvTimestep object, which includes the new observation, reward, | |
done flag, and info dictionary. | |
Arguments: | |
- action (:obj:`Union[int, np.ndarray]`): The action to be performed in the environment. If the action is | |
a 1-dimensional numpy array, it is squeezed to a 0-dimension array. | |
Returns: | |
- timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag, | |
and info dictionary. | |
.. note:: | |
- The cumulative reward (`_eval_episode_return`) is updated with the reward obtained in this step. | |
- If the episode ends (done is True), the total reward for the episode is stored in the info dictionary | |
under the key 'eval_episode_return'. | |
- An action mask is created with ones, which represents the availability of each action in the action space. | |
- Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'. | |
""" | |
if isinstance(action, np.ndarray) and action.shape == (1,): | |
action = action.squeeze() # 0-dim array | |
obs, rew, terminated, truncated, info = self._env.step(action) | |
done = terminated or truncated | |
self._eval_episode_return += rew | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
action_mask = np.ones(self.action_space.n, 'int8') | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
return BaseEnvTimestep(obs, rew, done, info) | |
def close(self) -> None: | |
""" | |
Close the environment, and set the initialization flag to False. | |
""" | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
""" | |
Set the seed for the environment's random number generator. Can handle both static and dynamic seeding. | |
""" | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: | |
""" | |
Enable the saving of replay videos. If no replay path is given, a default is used. | |
""" | |
if replay_path is None: | |
replay_path = './video' | |
self._replay_path = replay_path | |
def random_action(self) -> np.ndarray: | |
""" | |
Generate a random action using the action space's sample method. Returns a numpy array containing the action. | |
""" | |
random_action = self.action_space.sample() | |
random_action = to_ndarray([random_action], dtype=np.int64) | |
return random_action | |
def observation_space(self) -> gym.spaces.Space: | |
""" | |
Property to access the observation space of the environment. | |
""" | |
return self._observation_space | |
def action_space(self) -> gym.spaces.Space: | |
""" | |
Property to access the action space of the environment. | |
""" | |
return self._action_space | |
def reward_space(self) -> gym.spaces.Space: | |
""" | |
Property to access the reward space of the environment. | |
""" | |
return self._reward_space | |
def __repr__(self) -> str: | |
""" | |
String representation of the environment. | |
""" | |
return "LightZero CartPole Env" | |