Spaces:
Sleeping
Sleeping
import copy | |
from datetime import datetime | |
from typing import Union, Dict | |
import gymnasium as gym | |
import numpy as np | |
from ding.envs import BaseEnvTimestep | |
from ding.envs.common.common_function import affine_transform | |
from ding.torch_utils import to_ndarray | |
from ding.utils import ENV_REGISTRY | |
from easydict import EasyDict | |
from zoo.classic_control.cartpole.envs.cartpole_lightzero_env import CartPoleEnv | |
class PendulumEnv(CartPoleEnv): | |
""" | |
LightZero version of the classic Pendulum environment. This class includes methods for resetting, closing, and | |
stepping through the environment, as well as seeding for reproducibility, saving replay videos, and generating random | |
actions. It also includes properties for accessing the observation space, action space, and reward space of the | |
environment. | |
""" | |
def default_config(cls: type) -> EasyDict: | |
cfg = EasyDict(copy.deepcopy(cls.config)) | |
cfg.cfg_type = cls.__name__ + 'Dict' | |
return cfg | |
config = dict( | |
# (bool) Whether to use continuous action space | |
continuous=True, | |
# replay_path (str or None): The path to save the replay video. If None, the replay will not be saved. | |
# Only effective when env_manager.type is 'base'. | |
replay_path=None, | |
# (bool) Whether to scale action into [-2, 2] | |
act_scale=True, | |
) | |
def __init__(self, cfg: dict) -> None: | |
""" | |
Initialize the environment with a configuration dictionary. Sets up spaces for observations, actions, and rewards. | |
""" | |
self._cfg = cfg | |
self._act_scale = cfg.act_scale | |
try: | |
self._env = gym.make('Pendulum-v1', render_mode="rgb_array") | |
except: | |
self._env = gym.make('Pendulum-v0', render_mode="rgb_array") | |
self._init_flag = False | |
self._replay_path = cfg.replay_path | |
self._continuous = cfg.get("continuous", True) | |
self._observation_space = gym.spaces.Box( | |
low=np.array([-1.0, -1.0, -8.0]), high=np.array([1.0, 1.0, 8.0]), shape=(3,), dtype=np.float32 | |
) | |
if self._continuous: | |
self._action_space = gym.spaces.Box(low=-2.0, high=2.0, shape=(1,), dtype=np.float32) | |
else: | |
self.discrete_action_num = 11 | |
self._action_space = gym.spaces.Discrete(self.discrete_action_num) | |
self._action_space.seed(0) # default seed | |
self._reward_space = gym.spaces.Box( | |
low=-1 * (3.14 * 3.14 + 0.1 * 8 * 8 + 0.001 * 2 * 2), high=0.0, shape=(1,), dtype=np.float32 | |
) | |
def reset(self) -> Dict[str, np.ndarray]: | |
""" | |
Reset the environment. If it hasn't been initialized yet, this method also handles that. It also handles seeding | |
if necessary. Returns the first observation. | |
""" | |
if not self._init_flag: | |
try: | |
self._env = gym.make('Pendulum-v1', render_mode="rgb_array") | |
except: | |
self._env = gym.make('Pendulum-v0', render_mode="rgb_array") | |
if self._replay_path is not None: | |
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") | |
video_name = f'{self._env.spec.id}-video-{timestamp}' | |
self._env = gym.wrappers.RecordVideo( | |
self._env, | |
video_folder=self._replay_path, | |
episode_trigger=lambda episode_id: True, | |
name_prefix=video_name | |
) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._seed = self._seed + np_seed | |
self._action_space.seed(self._seed) | |
obs, _ = self._env.reset(seed=self._seed) | |
elif hasattr(self, '_seed'): | |
self._action_space.seed(self._seed) | |
obs, _ = self._env.reset(seed=self._seed) | |
else: | |
obs, _ = self._env.reset() | |
obs = to_ndarray(obs).astype(np.float32) | |
self._eval_episode_return = 0. | |
if not self._continuous: | |
action_mask = np.ones(self.discrete_action_num, 'int8') | |
else: | |
action_mask = None | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
return obs | |
def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep: | |
""" | |
Overview: | |
Step the environment forward with the provided action. This method returns the next state of the environment | |
(observation, reward, done flag, and info dictionary) encapsulated in a BaseEnvTimestep object. | |
Arguments: | |
- action (:obj:`Union[int, np.ndarray]`): The action to be performed in the environment. | |
Returns: | |
- timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag, | |
and info dictionary. | |
.. note:: | |
- If the environment requires discrete actions, they are converted to float actions in the range [-1, 1]. | |
- If action scaling is enabled, continuous actions are scaled into the range [-2, 2]. | |
- For each step, the cumulative reward (`_eval_episode_return`) is updated. | |
- If the episode ends (done is True), the total reward for the episode is stored in the info dictionary | |
under the key 'eval_episode_return'. | |
- If the environment requires discrete actions, an action mask is created, otherwise, it's None. | |
- Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'. | |
""" | |
if isinstance(action, int): | |
action = np.array(action) | |
# if require discrete env, convert actions to [-1 ~ 1] float actions | |
if not self._continuous: | |
action = (action / (self.discrete_action_num - 1)) * 2 - 1 | |
# scale the continous action into [-2, 2] | |
if self._act_scale: | |
action = affine_transform(action, min_val=self._env.action_space.low, max_val=self._env.action_space.high) | |
obs, rew, terminated, truncated, info = self._env.step(action) | |
done = terminated or truncated | |
self._eval_episode_return += rew | |
obs = to_ndarray(obs).astype(np.float32) | |
# wrapped to be transferred to an array with shape (1,) | |
rew = to_ndarray([rew]).astype(np.float32) | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
if not self._continuous: | |
action_mask = np.ones(self.discrete_action_num, 'int8') | |
else: | |
action_mask = None | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
return BaseEnvTimestep(obs, rew, done, info) | |
def random_action(self) -> np.ndarray: | |
""" | |
Generate a random action using the action space's sample method. Returns a numpy array containing the action. | |
""" | |
if self._continuous: | |
random_action = self.action_space.sample().astype(np.float32) | |
else: | |
random_action = self.action_space.sample() | |
random_action = to_ndarray([random_action], dtype=np.int64) | |
return random_action | |
def __repr__(self) -> str: | |
""" | |
String representation of the environment. | |
""" | |
return "LightZero Pendulum Env({})".format(self._cfg.env_id) | |