Spaces:
Sleeping
Sleeping
import copy | |
import os | |
from datetime import datetime | |
from typing import List, Optional | |
import gymnasium as gym | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from ding.envs import BaseEnv, BaseEnvTimestep | |
from ding.envs import ObsPlusPrevActRewWrapper | |
from ding.torch_utils import to_ndarray | |
from ding.utils import ENV_REGISTRY | |
from dizoo.minigrid.envs.minigrid_wrapper import ViewSizeWrapper | |
from dizoo.minigrid.envs.minigrid_env import MiniGridEnv | |
from easydict import EasyDict | |
from matplotlib import animation | |
from minigrid.wrappers import FlatObsWrapper | |
class MiniGridEnvLightZero(MiniGridEnv): | |
""" | |
Overview: | |
A MiniGrid environment for LightZero, based on OpenAI Gym. | |
Attributes: | |
config (dict): Configuration dict. Default configurations can be updated using this. | |
_cfg (dict): Internal configuration dict that stores runtime configurations. | |
_init_flag (bool): Flag to check if the environment is initialized. | |
_env_name (str): The name of the MiniGrid environment. | |
_flat_obs (bool): Flag to check if flat observations are returned. | |
_save_replay (bool): Flag to check if replays are saved. | |
_max_step (int): Maximum number of steps for the environment. | |
""" | |
config = dict( | |
# (str) The gym environment name. | |
env_name='MiniGrid-Empty-8x8-v0', | |
# (bool) If True, save the replay as a gif file. | |
save_replay_gif=False, | |
# (str or None) The path to save the replay gif. If None, the replay gif will not be saved. | |
replay_path_gif=None, | |
flat_obs=True, | |
# (int) The maximum number of steps for each episode. | |
max_step=300, | |
) | |
def default_config(cls: type) -> EasyDict: | |
""" | |
Overview: | |
Returns the default configuration with the current environment class name. | |
Returns: | |
- cfg (:obj:`dict`): Configuration dict. | |
""" | |
cfg = EasyDict(copy.deepcopy(cls.config)) | |
cfg.cfg_type = cls.__name__ + 'Dict' | |
return cfg | |
def __init__(self, cfg: dict) -> None: | |
""" | |
Overview: | |
Initialize the environment. | |
Arguments: | |
- cfg (:obj:`dict`): Configuration dict. The configuration should include the environment name, | |
whether to use flat observations, and the maximum number of steps. | |
""" | |
self._cfg = cfg | |
self._init_flag = False | |
self._env_name = cfg.env_name | |
self._flat_obs = cfg.flat_obs | |
self._save_replay_gif = cfg.save_replay_gif | |
self._replay_path_gif = cfg.replay_path_gif | |
self._max_step = cfg.max_step | |
self._save_replay_count = 0 | |
def reset(self) -> np.ndarray: | |
""" | |
Overview: | |
Reset the environment and return the initial observation. | |
Returns: | |
- obs (:obj:`np.ndarray`): Initial observation from the environment. | |
""" | |
if not self._init_flag: | |
if self._save_replay_gif: | |
self._env = gym.make(self._env_name, render_mode="rgb_array") | |
else: | |
self._env = gym.make(self._env_name) | |
# NOTE: customize the max step of the env | |
self._env.max_steps = self._max_step | |
if self._env_name in ['MiniGrid-AKTDT-13x13-v0' or 'MiniGrid-AKTDT-13x13-1-v0']: | |
# customize the agent field of view size, note this must be an odd number | |
# This also related to the observation space, see gym_minigrid.wrappers for more details | |
self._env = ViewSizeWrapper(self._env, agent_view_size=5) | |
if self._env_name == 'MiniGrid-AKTDT-7x7-1-v0': | |
self._env = ViewSizeWrapper(self._env, agent_view_size=3) | |
if self._flat_obs: | |
self._env = FlatObsWrapper(self._env) | |
# self._env = ImgObsWrapper(self._env) | |
# self._env = RGBImgPartialObsWrapper(self._env) | |
if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward: | |
self._env = ObsPlusPrevActRewWrapper(self._env) | |
self._init_flag = True | |
if self._flat_obs: | |
self._observation_space = gym.spaces.Box(0, 1, shape=(2835, )) | |
else: | |
self._observation_space = self._env.observation_space | |
# to be compatible with subprocess env manager | |
if isinstance(self._observation_space, gym.spaces.Dict): | |
self._observation_space['obs'].dtype = np.dtype('float32') | |
else: | |
self._observation_space.dtype = np.dtype('float32') | |
self._action_space = self._env.action_space | |
self._reward_space = gym.spaces.Box( | |
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 | |
) | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._seed = self._seed + np_seed | |
obs, _ = self._env.reset(seed=self._seed) # using the reset method of Gymnasium env | |
elif hasattr(self, '_seed'): | |
obs, _ = self._env.reset(seed=self._seed) | |
else: | |
obs, _ = self._env.reset() | |
obs = to_ndarray(obs) | |
self._eval_episode_return = 0 | |
self._current_step = 0 | |
if self._save_replay_gif: | |
self._frames = [] | |
action_mask = np.ones(self.action_space.n, 'int8') | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
return obs | |
def close(self) -> None: | |
""" | |
Close the environment, and set the initialization flag to False. | |
""" | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
""" | |
Set the seed for the environment's random number generator. Can handle both static and dynamic seeding. | |
""" | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def step(self, action: np.ndarray) -> BaseEnvTimestep: | |
""" | |
Overview: | |
Perform a step in the environment using the provided action, and return the next state of the environment. | |
The next state is encapsulated in a BaseEnvTimestep object, which includes the new observation, reward, | |
done flag, and info dictionary. | |
Arguments: | |
- action (:obj:`np.ndarray`): The action to be performed in the environment. | |
Returns: | |
- timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag, | |
and info dictionary. | |
.. note:: | |
- The cumulative reward (`_eval_episode_return`) is updated with the reward obtained in this step. | |
- If the episode ends (done is True), the total reward for the episode is stored in the info dictionary | |
under the key 'eval_episode_return'. | |
- An action mask is created with ones, which represents the availability of each action in the action space. | |
- Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'. | |
""" | |
if isinstance(action, np.ndarray) and action.shape == (1, ): | |
action = action.squeeze() # 0-dim array | |
if self._save_replay_gif: | |
self._frames.append(self._env.render()) | |
# using the step method of Gymnasium env, return is (observation, reward, terminated, truncated, info) | |
obs, rew, terminated, truncated, info = self._env.step(action) | |
done = terminated or truncated | |
rew = float(rew) | |
self._eval_episode_return += rew | |
self._current_step += 1 | |
if self._current_step >= self._max_step: | |
done = True | |
if done: | |
info['eval_episode_return'] = self._eval_episode_return | |
info['current_step'] = self._current_step | |
info['max_step'] = self._max_step | |
if self._save_replay_gif: | |
if not os.path.exists(self._replay_path_gif): | |
os.makedirs(self._replay_path_gif) | |
timestamp = datetime.now().strftime("%Y%m%d%H%M%S") | |
path = os.path.join( | |
self._replay_path_gif, | |
'{}_episode_{}_seed{}_{}.gif'.format(self._env_name, self._save_replay_count, self._seed, timestamp) | |
) | |
self.display_frames_as_gif(self._frames, path) | |
print(f'save episode {self._save_replay_count} in {self._replay_path_gif}!') | |
self._save_replay_count += 1 | |
obs = to_ndarray(obs) | |
rew = to_ndarray([rew]) # wrapped to be transferred to an array with shape (1,) | |
action_mask = np.ones(self.action_space.n, 'int8') | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
return BaseEnvTimestep(obs, rew, done, info) | |
def random_action(self) -> np.ndarray: | |
""" | |
Generate a random action using the action space's sample method. Returns a numpy array containing the action. | |
""" | |
random_action = self.action_space.sample() | |
random_action = to_ndarray([random_action], dtype=np.int64) | |
return random_action | |
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: | |
""" | |
Enable the saving of replay videos. If no replay path is given, a default is used. | |
""" | |
if replay_path is None: | |
replay_path = './video' | |
self._save_replay = True | |
self._replay_path = replay_path | |
self._save_replay_count = 0 | |
def display_frames_as_gif(frames: list, path: str) -> None: | |
patch = plt.imshow(frames[0]) | |
plt.axis('off') | |
def animate(i): | |
patch.set_data(frames[i]) | |
anim = animation.FuncAnimation(plt.gcf(), animate, frames=len(frames), interval=5) | |
anim.save(path, writer='imagemagick', fps=20) | |
def observation_space(self) -> gym.spaces.Space: | |
""" | |
Property to access the observation space of the environment. | |
""" | |
return self._observation_space | |
def action_space(self) -> gym.spaces.Space: | |
""" | |
Property to access the action space of the environment. | |
""" | |
return self._action_space | |
def reward_space(self) -> gym.spaces.Space: | |
""" | |
Property to access the reward space of the environment. | |
""" | |
return self._reward_space | |
def create_collector_env_cfg(cfg: dict) -> List[dict]: | |
collector_env_num = cfg.pop('collector_env_num') | |
cfg = copy.deepcopy(cfg) | |
cfg.is_train = True | |
return [cfg for _ in range(collector_env_num)] | |
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: | |
evaluator_env_num = cfg.pop('evaluator_env_num') | |
cfg = copy.deepcopy(cfg) | |
cfg.is_train = False | |
return [cfg for _ in range(evaluator_env_num)] | |
def __repr__(self) -> str: | |
""" | |
String representation of the environment. | |
""" | |
return "LightZero MiniGrid Env({})".format(self._cfg.env_name) |