Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
# options={'Hopper-v3', 'HalfCheetah-v3', 'Walker2d-v3', 'Ant-v3', 'Humanoid-v3'} | |
env_name = 'Hopper-v3' | |
if env_name == 'Hopper-v3': | |
action_space_size = 3 | |
observation_shape = 11 | |
elif env_name in ['HalfCheetah-v3', 'Walker2d-v3']: | |
action_space_size = 6 | |
observation_shape = 17 | |
elif env_name == 'Ant-v3': | |
action_space_size = 8 | |
observation_shape = 111 | |
elif env_name == 'Humanoid-v3': | |
action_space_size = 17 | |
observation_shape = 376 | |
ignore_done = False | |
if env_name == 'HalfCheetah-v3': | |
# for halfcheetah, we ignore done signal to predict the Q value of the last step correctly. | |
ignore_done = True | |
# ============================================================== | |
# begin of the most frequently changed config specified by the user | |
# ============================================================== | |
seed = 0 | |
collector_env_num = 8 | |
n_episode = 8 | |
evaluator_env_num = 3 | |
continuous_action_space = True | |
K = 20 # num_of_sampled_actions | |
num_simulations = 50 | |
update_per_collect = 200 | |
batch_size = 256 | |
max_env_step = int(5e6) | |
reanalyze_ratio = 0. | |
policy_entropy_loss_weight = 0.005 | |
# ============================================================== | |
# end of the most frequently changed config specified by the user | |
# ============================================================== | |
mujoco_sampled_efficientzero_config = dict( | |
exp_name= | |
f'data_sez_ctree/{env_name[:-3]}_sampled_efficientzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_bs-{batch_size}_pelw{policy_entropy_loss_weight}_seed{seed}', | |
env=dict( | |
env_name=env_name, | |
action_clip=True, | |
continuous=True, | |
manually_discretization=False, | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
n_evaluator_episode=evaluator_env_num, | |
manager=dict(shared_memory=False, ), | |
), | |
policy=dict( | |
model=dict( | |
observation_shape=observation_shape, | |
action_space_size=action_space_size, | |
continuous_action_space=continuous_action_space, | |
num_of_sampled_actions=K, | |
model_type='mlp', | |
lstm_hidden_size=256, | |
latent_state_dim=256, | |
self_supervised_learning_loss=True, | |
res_connection_in_dynamics=True, | |
), | |
cuda=True, | |
policy_entropy_loss_weight=policy_entropy_loss_weight, | |
ignore_done=ignore_done, | |
env_type='not_board_games', | |
game_segment_length=200, | |
update_per_collect=update_per_collect, | |
batch_size=batch_size, | |
discount_factor=0.997, | |
optim_type='AdamW', | |
lr_piecewise_constant_decay=False, | |
learning_rate=0.003, | |
grad_clip_value=0.5, | |
num_simulations=num_simulations, | |
reanalyze_ratio=reanalyze_ratio, | |
n_episode=n_episode, | |
eval_freq=int(2e3), | |
replay_buffer_size=int(1e6), | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
), | |
) | |
mujoco_sampled_efficientzero_config = EasyDict(mujoco_sampled_efficientzero_config) | |
main_config = mujoco_sampled_efficientzero_config | |
mujoco_sampled_efficientzero_create_config = dict( | |
env=dict( | |
type='mujoco_lightzero', | |
import_names=['zoo.mujoco.envs.mujoco_lightzero_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict( | |
type='sampled_efficientzero', | |
import_names=['lzero.policy.sampled_efficientzero'], | |
), | |
) | |
mujoco_sampled_efficientzero_create_config = EasyDict(mujoco_sampled_efficientzero_create_config) | |
create_config = mujoco_sampled_efficientzero_create_config | |
if __name__ == "__main__": | |
from lzero.entry import train_muzero | |
train_muzero([main_config, create_config], seed=seed, max_env_step=max_env_step) | |