Spaces:
Sleeping
Sleeping
import os | |
from typing import Union | |
import gymnasium as gym | |
import numpy as np | |
from ding.envs import BaseEnvTimestep | |
from ding.envs.common import save_frames_as_gif | |
from ding.torch_utils import to_ndarray | |
from ding.utils import ENV_REGISTRY | |
from dizoo.mujoco.envs.mujoco_env import MujocoEnv | |
class MujocoEnvLZ(MujocoEnv): | |
""" | |
Overview: | |
The modified MuJoCo environment with continuous action space for LightZero's algorithms. | |
""" | |
config = dict( | |
stop_value=int(1e6), | |
action_clip=False, | |
delay_reward_step=0, | |
# replay_path (str or None): The path to save the replay video. If None, the replay will not be saved. | |
# Only effective when env_manager.type is 'base'. | |
replay_path=None, | |
# (bool) If True, save the replay as a gif file. | |
save_replay_gif=False, | |
# (str or None) The path to save the replay gif. If None, the replay gif will not be saved. | |
replay_path_gif=None, | |
action_bins_per_branch=None, | |
norm_obs=dict(use_norm=False, ), | |
norm_reward=dict(use_norm=False, ), | |
) | |
def __init__(self, cfg: dict) -> None: | |
""" | |
Overview: | |
Initialize the MuJoCo environment. | |
Arguments: | |
- cfg (:obj:`dict`): Configuration dict. The dict should include keys like 'env_name', 'replay_path', etc. | |
""" | |
super().__init__(cfg) | |
self._cfg = cfg | |
# We use env_name to indicate the env_id in LightZero. | |
self._cfg.env_id = self._cfg.env_name | |
self._action_clip = cfg.action_clip | |
self._delay_reward_step = cfg.delay_reward_step | |
self._init_flag = False | |
self._replay_path = None | |
self._replay_path_gif = cfg.replay_path_gif | |
self._save_replay_gif = cfg.save_replay_gif | |
self._action_bins_per_branch = cfg.action_bins_per_branch | |
def reset(self) -> np.ndarray: | |
""" | |
Overview: | |
Reset the environment and return the initial observation. | |
Returns: | |
- obs (:obj:`np.ndarray`): The initial observation after resetting. | |
""" | |
if not self._init_flag: | |
self._env = self._make_env() | |
if self._replay_path is not None: | |
self._env = gym.wrappers.RecordVideo( | |
self._env, | |
video_folder=self._replay_path, | |
episode_trigger=lambda episode_id: True, | |
name_prefix='rl-video-{}'.format(id(self)) | |
) | |
self._env.observation_space.dtype = np.float32 | |
self._observation_space = self._env.observation_space | |
self._action_space = self._env.action_space | |
self._reward_space = gym.spaces.Box( | |
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32 | |
) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.seed(self._seed + np_seed) | |
elif hasattr(self, '_seed'): | |
self._env.seed(self._seed) | |
obs = self._env.reset() | |
obs = to_ndarray(obs).astype('float32') | |
self._eval_episode_return = 0. | |
action_mask = None | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
return obs | |
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: | |
""" | |
Overview: | |
Perform a step in the environment using the provided action, and return the next state of the environment. | |
The next state is encapsulated in a BaseEnvTimestep object, which includes the new observation, reward, | |
done flag, and info dictionary. | |
Arguments: | |
- action (:obj:`Union[np.ndarray, list]`): The action to be performed in the environment. | |
Returns: | |
- timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag, | |
and info dictionary. | |
.. note:: | |
- The cumulative reward (`_eval_episode_return`) is updated with the reward obtained in this step. | |
- If the episode ends (done is True), the total reward for the episode is stored in the info dictionary | |
under the key 'eval_episode_return'. | |
- An action mask is created with ones, which represents the availability of each action in the action space. | |
- Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'. | |
""" | |
if self._action_bins_per_branch: | |
action = self.map_action(action) | |
action = to_ndarray(action) | |
if self._save_replay_gif: | |
self._frames.append(self._env.render(mode='rgb_array')) | |
if self._action_clip: | |
action = np.clip(action, -1, 1) | |
obs, rew, done, info = self._env.step(action) | |
self._eval_episode_return += rew | |
if done: | |
if self._save_replay_gif: | |
path = os.path.join( | |
self._replay_path_gif, '{}_episode_{}.gif'.format(self._cfg.env_name, self._save_replay_count) | |
) | |
save_frames_as_gif(self._frames, path) | |
self._save_replay_count += 1 | |
info['eval_episode_return'] = self._eval_episode_return | |
obs = to_ndarray(obs).astype(np.float32) | |
rew = to_ndarray([rew]).astype(np.float32) | |
action_mask = None | |
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} | |
return BaseEnvTimestep(obs, rew, done, info) | |
def __repr__(self) -> str: | |
""" | |
String representation of the environment. | |
""" | |
return "LightZero Mujoco Env({})".format(self._cfg.env_name) | |