gomoku / LightZero /zoo /mujoco /envs /mujoco_lightzero_env.py
zjowowen's picture
init space
3dfe8fb
import os
from typing import Union
import gymnasium as gym
import numpy as np
from ding.envs import BaseEnvTimestep
from ding.envs.common import save_frames_as_gif
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY
from dizoo.mujoco.envs.mujoco_env import MujocoEnv
@ENV_REGISTRY.register('mujoco_lightzero')
class MujocoEnvLZ(MujocoEnv):
"""
Overview:
The modified MuJoCo environment with continuous action space for LightZero's algorithms.
"""
config = dict(
stop_value=int(1e6),
action_clip=False,
delay_reward_step=0,
# replay_path (str or None): The path to save the replay video. If None, the replay will not be saved.
# Only effective when env_manager.type is 'base'.
replay_path=None,
# (bool) If True, save the replay as a gif file.
save_replay_gif=False,
# (str or None) The path to save the replay gif. If None, the replay gif will not be saved.
replay_path_gif=None,
action_bins_per_branch=None,
norm_obs=dict(use_norm=False, ),
norm_reward=dict(use_norm=False, ),
)
def __init__(self, cfg: dict) -> None:
"""
Overview:
Initialize the MuJoCo environment.
Arguments:
- cfg (:obj:`dict`): Configuration dict. The dict should include keys like 'env_name', 'replay_path', etc.
"""
super().__init__(cfg)
self._cfg = cfg
# We use env_name to indicate the env_id in LightZero.
self._cfg.env_id = self._cfg.env_name
self._action_clip = cfg.action_clip
self._delay_reward_step = cfg.delay_reward_step
self._init_flag = False
self._replay_path = None
self._replay_path_gif = cfg.replay_path_gif
self._save_replay_gif = cfg.save_replay_gif
self._action_bins_per_branch = cfg.action_bins_per_branch
def reset(self) -> np.ndarray:
"""
Overview:
Reset the environment and return the initial observation.
Returns:
- obs (:obj:`np.ndarray`): The initial observation after resetting.
"""
if not self._init_flag:
self._env = self._make_env()
if self._replay_path is not None:
self._env = gym.wrappers.RecordVideo(
self._env,
video_folder=self._replay_path,
episode_trigger=lambda episode_id: True,
name_prefix='rl-video-{}'.format(id(self))
)
self._env.observation_space.dtype = np.float32
self._observation_space = self._env.observation_space
self._action_space = self._env.action_space
self._reward_space = gym.spaces.Box(
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32
)
self._init_flag = True
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
np_seed = 100 * np.random.randint(1, 1000)
self._env.seed(self._seed + np_seed)
elif hasattr(self, '_seed'):
self._env.seed(self._seed)
obs = self._env.reset()
obs = to_ndarray(obs).astype('float32')
self._eval_episode_return = 0.
action_mask = None
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
return obs
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep:
"""
Overview:
Perform a step in the environment using the provided action, and return the next state of the environment.
The next state is encapsulated in a BaseEnvTimestep object, which includes the new observation, reward,
done flag, and info dictionary.
Arguments:
- action (:obj:`Union[np.ndarray, list]`): The action to be performed in the environment.
Returns:
- timestep (:obj:`BaseEnvTimestep`): An object containing the new observation, reward, done flag,
and info dictionary.
.. note::
- The cumulative reward (`_eval_episode_return`) is updated with the reward obtained in this step.
- If the episode ends (done is True), the total reward for the episode is stored in the info dictionary
under the key 'eval_episode_return'.
- An action mask is created with ones, which represents the availability of each action in the action space.
- Observations are returned in a dictionary format containing 'observation', 'action_mask', and 'to_play'.
"""
if self._action_bins_per_branch:
action = self.map_action(action)
action = to_ndarray(action)
if self._save_replay_gif:
self._frames.append(self._env.render(mode='rgb_array'))
if self._action_clip:
action = np.clip(action, -1, 1)
obs, rew, done, info = self._env.step(action)
self._eval_episode_return += rew
if done:
if self._save_replay_gif:
path = os.path.join(
self._replay_path_gif, '{}_episode_{}.gif'.format(self._cfg.env_name, self._save_replay_count)
)
save_frames_as_gif(self._frames, path)
self._save_replay_count += 1
info['eval_episode_return'] = self._eval_episode_return
obs = to_ndarray(obs).astype(np.float32)
rew = to_ndarray([rew]).astype(np.float32)
action_mask = None
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
return BaseEnvTimestep(obs, rew, done, info)
def __repr__(self) -> str:
"""
String representation of the environment.
"""
return "LightZero Mujoco Env({})".format(self._cfg.env_name)