File size: 7,285 Bytes
3fdcc70
eaf6e7b
3fdcc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaf6e7b
 
3fdcc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaf6e7b
3fdcc70
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
from turtle import mode
import openai
import requests
from typing import (
    Any,
    Dict,
    List,
    Optional,
)
from langchain.schema import (
    AIMessage,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.chat_models.base import SimpleChatModel
import os
import sys

sys.path.append(os.getcwd())

from cllm.services.nlp.llms.memory import MessageMemory
from cllm.utils import timeout


class ChatOpenAI:
    def __init__(
        self,
        model_name: str = "gpt-3.5-turbo",
        temperature: float = 0.7,
        model_kwargs: Dict[str, Any] = dict(),
        openai_api_key: Optional[str] = None,
        openai_base_url: Optional[str] = None,
    ) -> None:
        self.model_name = model_name
        self.temperature = temperature
        self.model_kwargs = model_kwargs
        self.api_key = os.environ.get("OPENAI_API_KEY", openai_api_key)
        self.base_url = os.environ.get("OPENAI_BASE_URL", openai_base_url)
        # openai.api_key = self.api_key
        # openai.base_url = self.base_url

    def __call__(self, messages: List[BaseMessage], **kwargs):
        stream = kwargs.get("stream", False)
        context = MessageMemory(messages=messages)
        context.cut_memory(self.model_name)
        response = self.send_message(messages=context.to_dict(), stream=stream)
        return response

    def get_response(self, response):
        return response.choices[0].message.content

    def send_message(self, messages, stream=False):
        cnt = 10
        while cnt > 0:
            try:
                result = self.get_response(
                    self._send_message(
                        model=self.model_name,
                        messages=messages,
                        temperature=self.temperature,
                        stream=stream,
                        timeout=5,
                    )
                )
                break
            except Exception as e:
                cnt -= 1
                print(e)
                result = e
        return result

    # @timeout(5)
    def _send_message(self, *args, **kwargs):
        # return self.client.chat.completions.create(*args, **kwargs)
        # return openai.Completion.create(*args, **kwargs)
        return openai.chat.completions.create(*args, **kwargs)


class ChatLLAMA2(SimpleChatModel):
    """Wrapper around LLAMA2

    To use, you should launch you local model as web services.
    """

    client: Any = None  #: :meta private:
    endpoint: str = "http://localhost:10051"

    HUMAN_PROMPT = "user"
    AI_PROMPT = "assistant"

    @property
    def _llm_type(self) -> str:
        """Return type of chat model."""
        return "local-chat"

    def _call(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
    ) -> str:
        data = self._convert_messages_to_prompt(messages)
        response = requests.post(self.endpoint, json=data)
        return response.content.decode()

    def _convert_one_message_to_text(self, message: BaseMessage) -> str:
        if isinstance(message, ChatMessage):
            message_text = {
                "role": message.role.capitalize(),
                "content": message.content,
            }
        elif isinstance(message, HumanMessage):
            message_text = {"role": self.HUMAN_PROMPT, "content": message.content}
        elif isinstance(message, AIMessage):
            message_text = {"role": self.AI_PROMPT, "content": message.content}
        elif isinstance(message, SystemMessage):
            message_text = {"role": "system", "content": message.content}
        else:
            raise ValueError(f"Got unknown type {message}")
        return message_text

    def _convert_messages_to_text(self, messages: List[BaseMessage]) -> str:
        """Format a list of strings into a single string with necessary newlines.

        Args:
            messages (List[BaseMessage]): List of BaseMessage to combine.

        Returns:
            str: Combined string with necessary newlines.
        """
        return [self._convert_one_message_to_text(message) for message in messages]

    def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str:
        """Format a list of messages into a full prompt for the Anthropic model

        Args:
            messages (List[BaseMessage]): List of BaseMessage to combine.

        Returns:
            str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags.
        """
        return self._convert_messages_to_text(messages)


class ChatLLAMA2(SimpleChatModel):
    """Wrapper around LLAMA2

    To use, you should launch you local model as web services.
    """

    client: Any = None  #: :meta private:
    endpoint: str = "http://localhost:10051"

    HUMAN_PROMPT = "user"
    AI_PROMPT = "assistant"

    @property
    def _llm_type(self) -> str:
        """Return type of chat model."""
        return "local-chat"

    def _call(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
    ) -> str:
        data = self._convert_messages_to_prompt(messages)
        response = requests.post(self.endpoint, json=data)
        return response.content.decode()

    def _convert_one_message_to_text(self, message: BaseMessage) -> str:
        if isinstance(message, ChatMessage):
            message_text = {
                "role": message.role.capitalize(),
                "content": message.content,
            }
        elif isinstance(message, HumanMessage):
            message_text = {"role": self.HUMAN_PROMPT, "content": message.content}
        elif isinstance(message, AIMessage):
            message_text = {"role": self.AI_PROMPT, "content": message.content}
        elif isinstance(message, SystemMessage):
            message_text = {"role": "system", "content": message.content}
        else:
            raise ValueError(f"Got unknown type {message}")
        return message_text

    def _convert_messages_to_text(self, messages: List[BaseMessage]) -> str:
        """Format a list of strings into a single string with necessary newlines.

        Args:
            messages (List[BaseMessage]): List of BaseMessage to combine.

        Returns:
            str: Combined string with necessary newlines.
        """
        return [self._convert_one_message_to_text(message) for message in messages]

    def _convert_messages_to_prompt(self, messages: List[BaseMessage]) -> str:
        """Format a list of messages into a full prompt for the Anthropic model

        Args:
            messages (List[BaseMessage]): List of BaseMessage to combine.

        Returns:
            str: Combined string with necessary HUMAN_PROMPT and AI_PROMPT tags.
        """
        return self._convert_messages_to_text(messages)


if __name__ == "__main__":
    chat = ChatOpenAI(model_name="gpt-3.5-turbo-1106")
    msg = [
        SystemMessage(content="You are a helpful assistant."),
        HumanMessage(content="Hello!"),
    ]
    response = chat(msg)
    print(response)