Spaces:
Sleeping
Sleeping
File size: 8,167 Bytes
3fdcc70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import copy
import io
import os
from PIL import Image, ImageDraw, ImageChops
import numpy as np
import requests
from PIL import Image
from typing import List, Union
from pathlib import Path
import os
import sys
sys.path.append(os.getcwd())
from cllm.services.utils import get_bytes_value
from cllm.utils import get_real_path
from cllm.services.nlp.api import openai_chat_model
__ALL__ = [
"instruct_pix2pix",
"image_cropping",
"image_matting",
"draw_bbox_on_image",
"partial_image_editing",
]
HOST = os.environ.get("CLLM_SERVICES_HOST", "localhost")
PORT = os.environ.get("CLLM_SERVICES_PORT", 10056)
def setup(host="localhost", port=10049):
global HOST, PORT
HOST = host
PORT = port
def image_cropping(image: str | Path, object: List[dict], **kwargs):
"""
bbox format: {'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}
"""
if object in [None, b"", []]:
return None
if isinstance(image, (str, Path)):
image = Image.open(get_real_path(image)).convert("RGB")
elif isinstance(image, bytes):
image = Image.open(io.BytesIO(image)).convert("RGB")
w, h = image.size
cropped_images = []
for box in object:
box = copy.deepcopy(box["box"])
box = unify_bbox(box, w, h)
(left, upper, right, lower) = (
box["xmin"],
box["ymin"],
box["xmax"],
box["ymax"],
)
cropped_image = image.crop((left, upper, right, lower))
# cropped_image.save('test.png')
img_stream = io.BytesIO()
cropped_image.save(img_stream, format="png")
img_stream.seek(0)
cropped_images.append(img_stream.getvalue())
if len(cropped_images) == 0:
return None
return cropped_images
def image_matting(image: str | Path, mask: Union[str, bytes, List], **kwargs):
"""
{'score': 0.999025,
'label': 'person',
'mask': <PIL.Image.Image image mode=L size=386x384>}
"""
if mask in [None, b"", []]:
return None
image = Image.open(get_bytes_value(image)).convert("RGB")
mask = copy.deepcopy(mask)
if isinstance(mask, List):
mask_list = []
for m in mask:
if isinstance(m, dict):
mask_list.append(get_bytes_value(m["mask"]))
else:
mask_list.append(get_bytes_value(m))
mask = combine_masks(mask_list)
elif isinstance(mask, str):
mask = get_bytes_value(mask)
mask = Image.open(mask).convert("L")
mask = np.array(mask) > 0
image = np.array(image)
image = image * np.expand_dims(mask, -1)
img_stream = io.BytesIO()
image.save(img_stream, format="png")
img_stream.seek(0)
return img_stream.getvalue()
def unify_bbox(bbox, w, h):
bbox["xmin"] = (
bbox["xmin"] if isinstance(bbox["xmin"], int) else int(bbox["xmin"] * w)
)
bbox["ymin"] = (
bbox["ymin"] if isinstance(bbox["ymin"], int) else int(bbox["ymin"] * h)
)
bbox["xmax"] = (
bbox["xmax"] if isinstance(bbox["xmax"], int) else int(bbox["xmax"] * w)
)
bbox["ymax"] = (
bbox["ymax"] if isinstance(bbox["ymax"], int) else int(bbox["ymax"] * h)
)
return bbox
def draw_bbox_on_image(image: str | Path, bbox: list, **kwargs):
if isinstance(image, (str, Path)):
image = Image.open(get_real_path(image)).convert("RGB")
elif isinstance(image, bytes):
image = Image.open(io.BytesIO(image)).convert("RGB")
image = image.copy()
w, h = image.size
for box in bbox:
box = copy.deepcopy(box["box"])
box = unify_bbox(box, w, h)
(left, upper, right, lower) = (
box["xmin"],
box["ymin"],
box["xmax"],
box["ymax"],
)
draw = ImageDraw.Draw(image)
font_width = int(
min(box["xmax"] - box["xmin"], box["ymax"] - box["ymin"]) * 0.01
)
draw.rectangle(((left, upper), (right, lower)), outline="Red", width=font_width)
img_stream = io.BytesIO()
image.save(img_stream, format="png")
img_stream.seek(0)
# image = Image.save(image, format='png')
return img_stream.getvalue()
def _imagetext2image(image, text, endpoint, **kwargs):
host = kwargs.get("host", HOST)
port = kwargs.get("port", PORT)
url = f"http://{host}:{port}/{endpoint}"
data = {"text": text}
files = {"image": (image, get_bytes_value(image))}
response = requests.post(url, files=files, data=data)
return response.content
def instruct_pix2pix(image, text, **kwargs):
return _imagetext2image(image, text, endpoint="instruct_pix2pix", **kwargs)
def partial_image_editing(
image: str | bytes, mask: str | list | bytes, prompt: str, **kwargs
):
if mask in [None, b"", []]:
return None
host = kwargs.get("host", HOST)
port = kwargs.get("port", PORT)
url = f"http://{host}:{port}/partial_image_editing"
human_msg = f"""Your task is to extract the prompt from input. Here is examples:
Input:
Replace the masked object in the given image with a yellow horse
Answer:
a yellow horse
Input:
Use the c1s5af_mask.png in to replace the object with a man in the image
Answer:
a man
Input:
Modify the given image by replacing the object indicated in the mask with a bouquet of flowers
Answer:
with a bouquet of flowers
Input:
Use the 7a3c72_mask.png file to replace the object in the a9430b_image.png with a bus colored yellow and red with the number 5 on its front sign
Answer:
a bus colored yellow and red with the number 5 on its front sign.
Input:
Replace the masked area in image with a fat boy wearing a black jacket.
Answer:
a fat boy wearing a black jacket
Input:
{prompt}
Answer:
"""
extracted_prompt = openai_chat_model(human_msg)
data = {"prompt": extracted_prompt}
if isinstance(mask, List):
mask_list = []
for m in mask:
if isinstance(m, dict):
mask_list.append(get_bytes_value(m["mask"]))
else:
mask_list.append(get_bytes_value(m))
mask = combine_masks(mask_list)
files = {
"image": (image, get_bytes_value(image)),
"mask": ("mask", get_bytes_value(mask)),
}
response = requests.post(url, files=files, data=data)
return response.content
def combine_masks(mask_images):
if mask_images is None or len(mask_images) == 0:
return None
# Create a new blank image to store the combined mask
combined_mask = Image.open(io.BytesIO(mask_images[0])).convert("1")
# Iterate through each mask image and combine them
for mask_image in mask_images:
mask = Image.open(io.BytesIO(mask_image)).convert("1")
combined_mask = ImageChops.logical_or(combined_mask, mask)
stream = io.BytesIO()
combined_mask.save(stream, "png")
stream.seek(0)
# return {"label": mask_images[0]["label"], "mask": stream.getvalue()}
return stream.getvalue()
def inpainting_ldm_general(image, mask: Union[str, bytes, List], **kwargs):
if mask in [None, b"", []]:
return get_bytes_value(image)
mask = copy.deepcopy(mask)
if isinstance(mask, List):
mask_list = []
for m in mask:
if isinstance(m, dict):
mask_list.append(get_bytes_value(m["mask"]))
else:
mask_list.append(get_bytes_value(m))
mask = combine_masks(mask_list)
elif isinstance(mask, str):
mask = get_bytes_value(mask)
# mask = Image.open(mask).convert("1")
return inpainting_ldm(image, mask, **kwargs)
def inpainting_ldm(image, mask, **kwargs):
if mask in [None, b""]:
return get_bytes_value(image)
host = kwargs.get("host", HOST)
port = kwargs.get("port", PORT)
url = f"http://{host}:{port}/inpainting_ldm"
files = {
"image": (image, get_bytes_value(image)),
"mask": get_bytes_value(mask),
}
response = requests.post(url, files=files)
return response.content
|