File size: 8,167 Bytes
3fdcc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import copy
import io
import os
from PIL import Image, ImageDraw, ImageChops
import numpy as np
import requests
from PIL import Image
from typing import List, Union
from pathlib import Path
import os
import sys

sys.path.append(os.getcwd())
from cllm.services.utils import get_bytes_value
from cllm.utils import get_real_path
from cllm.services.nlp.api import openai_chat_model

__ALL__ = [
    "instruct_pix2pix",
    "image_cropping",
    "image_matting",
    "draw_bbox_on_image",
    "partial_image_editing",
]


HOST = os.environ.get("CLLM_SERVICES_HOST", "localhost")
PORT = os.environ.get("CLLM_SERVICES_PORT", 10056)


def setup(host="localhost", port=10049):
    global HOST, PORT
    HOST = host
    PORT = port


def image_cropping(image: str | Path, object: List[dict], **kwargs):
    """
    bbox format: {'score': 0.997, 'label': 'bird', 'box': {'xmin': 69, 'ymin': 171, 'xmax': 396, 'ymax': 507}}
    """
    if object in [None, b"", []]:
        return None

    if isinstance(image, (str, Path)):
        image = Image.open(get_real_path(image)).convert("RGB")
    elif isinstance(image, bytes):
        image = Image.open(io.BytesIO(image)).convert("RGB")
    w, h = image.size
    cropped_images = []
    for box in object:
        box = copy.deepcopy(box["box"])
        box = unify_bbox(box, w, h)
        (left, upper, right, lower) = (
            box["xmin"],
            box["ymin"],
            box["xmax"],
            box["ymax"],
        )
        cropped_image = image.crop((left, upper, right, lower))
        # cropped_image.save('test.png')
        img_stream = io.BytesIO()
        cropped_image.save(img_stream, format="png")
        img_stream.seek(0)
        cropped_images.append(img_stream.getvalue())
    if len(cropped_images) == 0:
        return None
    return cropped_images


def image_matting(image: str | Path, mask: Union[str, bytes, List], **kwargs):
    """
    {'score': 0.999025,
    'label': 'person',
    'mask': <PIL.Image.Image image mode=L size=386x384>}
    """
    if mask in [None, b"", []]:
        return None
    image = Image.open(get_bytes_value(image)).convert("RGB")

    mask = copy.deepcopy(mask)
    if isinstance(mask, List):
        mask_list = []
        for m in mask:
            if isinstance(m, dict):
                mask_list.append(get_bytes_value(m["mask"]))
            else:
                mask_list.append(get_bytes_value(m))
        mask = combine_masks(mask_list)
    elif isinstance(mask, str):
        mask = get_bytes_value(mask)

    mask = Image.open(mask).convert("L")

    mask = np.array(mask) > 0
    image = np.array(image)
    image = image * np.expand_dims(mask, -1)
    img_stream = io.BytesIO()
    image.save(img_stream, format="png")
    img_stream.seek(0)
    return img_stream.getvalue()


def unify_bbox(bbox, w, h):
    bbox["xmin"] = (
        bbox["xmin"] if isinstance(bbox["xmin"], int) else int(bbox["xmin"] * w)
    )

    bbox["ymin"] = (
        bbox["ymin"] if isinstance(bbox["ymin"], int) else int(bbox["ymin"] * h)
    )
    bbox["xmax"] = (
        bbox["xmax"] if isinstance(bbox["xmax"], int) else int(bbox["xmax"] * w)
    )
    bbox["ymax"] = (
        bbox["ymax"] if isinstance(bbox["ymax"], int) else int(bbox["ymax"] * h)
    )
    return bbox


def draw_bbox_on_image(image: str | Path, bbox: list, **kwargs):
    if isinstance(image, (str, Path)):
        image = Image.open(get_real_path(image)).convert("RGB")
    elif isinstance(image, bytes):
        image = Image.open(io.BytesIO(image)).convert("RGB")
    image = image.copy()
    w, h = image.size
    for box in bbox:
        box = copy.deepcopy(box["box"])
        box = unify_bbox(box, w, h)
        (left, upper, right, lower) = (
            box["xmin"],
            box["ymin"],
            box["xmax"],
            box["ymax"],
        )
        draw = ImageDraw.Draw(image)
        font_width = int(
            min(box["xmax"] - box["xmin"], box["ymax"] - box["ymin"]) * 0.01
        )
        draw.rectangle(((left, upper), (right, lower)), outline="Red", width=font_width)
    img_stream = io.BytesIO()
    image.save(img_stream, format="png")
    img_stream.seek(0)
    # image = Image.save(image, format='png')
    return img_stream.getvalue()


def _imagetext2image(image, text, endpoint, **kwargs):
    host = kwargs.get("host", HOST)
    port = kwargs.get("port", PORT)
    url = f"http://{host}:{port}/{endpoint}"
    data = {"text": text}
    files = {"image": (image, get_bytes_value(image))}
    response = requests.post(url, files=files, data=data)
    return response.content


def instruct_pix2pix(image, text, **kwargs):
    return _imagetext2image(image, text, endpoint="instruct_pix2pix", **kwargs)


def partial_image_editing(
    image: str | bytes, mask: str | list | bytes, prompt: str, **kwargs
):
    if mask in [None, b"", []]:
        return None

    host = kwargs.get("host", HOST)
    port = kwargs.get("port", PORT)
    url = f"http://{host}:{port}/partial_image_editing"
    human_msg = f"""Your task is to extract the prompt from input. Here is examples:

    Input:
    Replace the masked object in the given image with a yellow horse

    Answer:
    a yellow horse

    Input:
    Use the c1s5af_mask.png in to replace the object with a man in the image

    Answer:
    a man

    Input:
    Modify the given image by replacing the object indicated in the mask with a bouquet of flowers

    Answer:
    with a bouquet of flowers

    Input:
    Use the 7a3c72_mask.png file to replace the object in the a9430b_image.png with a bus colored yellow and red with the number 5 on its front sign

    Answer:
    a bus colored yellow and red with the number 5 on its front sign.

    Input:
    Replace the masked area in image with a fat boy wearing a black jacket.

    Answer:
    a fat boy wearing a black jacket

    Input:
    {prompt}

    Answer:
    """
    extracted_prompt = openai_chat_model(human_msg)
    data = {"prompt": extracted_prompt}
    if isinstance(mask, List):
        mask_list = []
        for m in mask:
            if isinstance(m, dict):
                mask_list.append(get_bytes_value(m["mask"]))
            else:
                mask_list.append(get_bytes_value(m))
        mask = combine_masks(mask_list)

    files = {
        "image": (image, get_bytes_value(image)),
        "mask": ("mask", get_bytes_value(mask)),
    }
    response = requests.post(url, files=files, data=data)
    return response.content


def combine_masks(mask_images):
    if mask_images is None or len(mask_images) == 0:
        return None

    # Create a new blank image to store the combined mask
    combined_mask = Image.open(io.BytesIO(mask_images[0])).convert("1")

    # Iterate through each mask image and combine them
    for mask_image in mask_images:
        mask = Image.open(io.BytesIO(mask_image)).convert("1")
        combined_mask = ImageChops.logical_or(combined_mask, mask)
    stream = io.BytesIO()
    combined_mask.save(stream, "png")
    stream.seek(0)
    # return {"label": mask_images[0]["label"], "mask": stream.getvalue()}
    return stream.getvalue()


def inpainting_ldm_general(image, mask: Union[str, bytes, List], **kwargs):
    if mask in [None, b"", []]:
        return get_bytes_value(image)

    mask = copy.deepcopy(mask)
    if isinstance(mask, List):
        mask_list = []
        for m in mask:
            if isinstance(m, dict):
                mask_list.append(get_bytes_value(m["mask"]))
            else:
                mask_list.append(get_bytes_value(m))
        mask = combine_masks(mask_list)
    elif isinstance(mask, str):
        mask = get_bytes_value(mask)
        # mask = Image.open(mask).convert("1")

    return inpainting_ldm(image, mask, **kwargs)


def inpainting_ldm(image, mask, **kwargs):
    if mask in [None, b""]:
        return get_bytes_value(image)

    host = kwargs.get("host", HOST)
    port = kwargs.get("port", PORT)
    url = f"http://{host}:{port}/inpainting_ldm"
    files = {
        "image": (image, get_bytes_value(image)),
        "mask": get_bytes_value(mask),
    }
    response = requests.post(url, files=files)
    return response.content