File size: 4,801 Bytes
3fdcc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaf6e7b
3fdcc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaf6e7b
3fdcc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import io
import os
import time

import requests
import json
from .llms.chat_models import ChatOpenAI
from langchain.schema import (
    HumanMessage,
    SystemMessage,
    AIMessage,
)
from typing import (
    TYPE_CHECKING,
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Tuple,
    Type,
    Union,
)

__ALL__ = [
    "text_to_text_generation",
    "title_generation",
    "text_to_tags",
    "question_answering",
    "summarization",
]


HOST = "localhost"
PORT = os.environ.get("CLLM_SERVICES_PORT", 10056)


def setup(host="localhost", port=10056):
    global HOST, PORT
    HOST = host
    PORT = port


def text_to_text_generation(text: str, **kwargs):
    host = kwargs.get("host", HOST)
    port = kwargs.get("port", PORT)
    url = f"http://{host}:{port}/text_to_text_generation"
    data = {"text": text}
    response = requests.post(url, data=data)
    return response.json()


def question_answering_with_context(context: str, question: str, **kwargs):
    host = kwargs.get("host", HOST)
    port = kwargs.get("port", PORT)
    url = f"http://{host}:{port}/question_answering_with_context"
    data = {"context": context, "question": question}
    response = requests.post(url, data=data)
    return response.json()


def openai_chat_model(input_msg: str, **kwargs):
    chat = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
    chat_log = []
    default_sys_msg = "Your name is ControlLLM, an AI-powered assistant developed by OpenGVLab from Shanghai AI Lab. You need to respond to user requests based on the following information."
    sys_msg = kwargs.get("sys_msg", default_sys_msg)
    if sys_msg is not None:
        chat_log.append(SystemMessage(content=sys_msg))
    # history_msgs: list[str]
    history_msgs = []
    if "history_msgs" in kwargs:
        history_msgs = kwargs.get("history_msgs", [])

    for item in history_msgs:
        if isinstance(item[0], (list, tuple)):
            item[0] = "Received file: " + item[0][0]
        if isinstance(item[1], (list, tuple)):
            item[1] = "Generated file: " + item[1][0]
        if item[0] is not None:
            chat_log.append(HumanMessage(content=item[0]))
        if item[1] is not None:
            chat_log.append(AIMessage(content=item[1]))
        # chat_log.extend([HumanMessage(content=item[0]), AIMessage(content=item[1])])
    if not isinstance(input_msg, str):
        input_msg = json.dumps(input_msg, ensure_ascii=False)
    output = chat(chat_log + [HumanMessage(content=input_msg)])
    return output


def title_generation(text: str, **kwargs):
    question = "summarize"
    response = question_answering_with_context(text, question)
    return response


def summarization(text: str, **kwargs):
    host = kwargs.get("host", HOST)
    port = kwargs.get("port", PORT)
    url = f"http://{host}:{port}/summarization"
    data = {"text": text}
    response = requests.post(url, data=data)
    return response.json()


def text_to_tags(text: str, **kwargs):
    host = kwargs.get("host", HOST)
    port = kwargs.get("port", PORT)
    url = f"http://{host}:{port}/text_to_tags"
    data = {"text": text}
    response = requests.post(url, data=data)
    return response.json()


def get_time(location: str = None, **kwargs):
    return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())


def get_weather(location: str | list, **kwargs):
    host = kwargs.get("host", HOST)
    port = kwargs.get("port", PORT)
    url = f"http://{host}:{port}/get_weather"
    if isinstance(location, list):
        t = {"CITY": "", "COUNTRY": ""}
        for l in location:
            if l["entity_group"] not in t.keys():
                continue
            if t[l["entity_group"]] == "":
                t[l["entity_group"]] = l["word"].title()
        location = ",".join([t["CITY"], t["COUNTRY"]])

    data = {"location": location}
    response = requests.post(url, data=data)
    return response.json()


def summarize_weather_condition(weather: str | list, **kwargs):
    if isinstance(weather, list):
        weather = json.dumps(weather, ensure_ascii=False)
    result = openai_chat_model(
        f"Please Summarize weather condition and make user better understand it: \n {weather}"
    )
    return result


def extract_location(text: str, **kwargs):
    host = kwargs.get("host", HOST)
    port = kwargs.get("port", PORT)
    url = f"http://{host}:{port}/extract_location"
    data = {"text": text}
    response = requests.post(url, data=data)
    return response.json()


def sentiment_analysis(text: str, **kwargs):
    host = kwargs.get("host", HOST)
    port = kwargs.get("port", PORT)
    url = f"http://{host}:{port}/sentiment_analysis"
    data = {"text": text}
    response = requests.post(url, data=data)
    return response.json()