Spaces:
Sleeping
Sleeping
File size: 4,801 Bytes
3fdcc70 eaf6e7b 3fdcc70 eaf6e7b 3fdcc70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import io
import os
import time
import requests
import json
from .llms.chat_models import ChatOpenAI
from langchain.schema import (
HumanMessage,
SystemMessage,
AIMessage,
)
from typing import (
TYPE_CHECKING,
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Mapping,
Optional,
Tuple,
Type,
Union,
)
__ALL__ = [
"text_to_text_generation",
"title_generation",
"text_to_tags",
"question_answering",
"summarization",
]
HOST = "localhost"
PORT = os.environ.get("CLLM_SERVICES_PORT", 10056)
def setup(host="localhost", port=10056):
global HOST, PORT
HOST = host
PORT = port
def text_to_text_generation(text: str, **kwargs):
host = kwargs.get("host", HOST)
port = kwargs.get("port", PORT)
url = f"http://{host}:{port}/text_to_text_generation"
data = {"text": text}
response = requests.post(url, data=data)
return response.json()
def question_answering_with_context(context: str, question: str, **kwargs):
host = kwargs.get("host", HOST)
port = kwargs.get("port", PORT)
url = f"http://{host}:{port}/question_answering_with_context"
data = {"context": context, "question": question}
response = requests.post(url, data=data)
return response.json()
def openai_chat_model(input_msg: str, **kwargs):
chat = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
chat_log = []
default_sys_msg = "Your name is ControlLLM, an AI-powered assistant developed by OpenGVLab from Shanghai AI Lab. You need to respond to user requests based on the following information."
sys_msg = kwargs.get("sys_msg", default_sys_msg)
if sys_msg is not None:
chat_log.append(SystemMessage(content=sys_msg))
# history_msgs: list[str]
history_msgs = []
if "history_msgs" in kwargs:
history_msgs = kwargs.get("history_msgs", [])
for item in history_msgs:
if isinstance(item[0], (list, tuple)):
item[0] = "Received file: " + item[0][0]
if isinstance(item[1], (list, tuple)):
item[1] = "Generated file: " + item[1][0]
if item[0] is not None:
chat_log.append(HumanMessage(content=item[0]))
if item[1] is not None:
chat_log.append(AIMessage(content=item[1]))
# chat_log.extend([HumanMessage(content=item[0]), AIMessage(content=item[1])])
if not isinstance(input_msg, str):
input_msg = json.dumps(input_msg, ensure_ascii=False)
output = chat(chat_log + [HumanMessage(content=input_msg)])
return output
def title_generation(text: str, **kwargs):
question = "summarize"
response = question_answering_with_context(text, question)
return response
def summarization(text: str, **kwargs):
host = kwargs.get("host", HOST)
port = kwargs.get("port", PORT)
url = f"http://{host}:{port}/summarization"
data = {"text": text}
response = requests.post(url, data=data)
return response.json()
def text_to_tags(text: str, **kwargs):
host = kwargs.get("host", HOST)
port = kwargs.get("port", PORT)
url = f"http://{host}:{port}/text_to_tags"
data = {"text": text}
response = requests.post(url, data=data)
return response.json()
def get_time(location: str = None, **kwargs):
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
def get_weather(location: str | list, **kwargs):
host = kwargs.get("host", HOST)
port = kwargs.get("port", PORT)
url = f"http://{host}:{port}/get_weather"
if isinstance(location, list):
t = {"CITY": "", "COUNTRY": ""}
for l in location:
if l["entity_group"] not in t.keys():
continue
if t[l["entity_group"]] == "":
t[l["entity_group"]] = l["word"].title()
location = ",".join([t["CITY"], t["COUNTRY"]])
data = {"location": location}
response = requests.post(url, data=data)
return response.json()
def summarize_weather_condition(weather: str | list, **kwargs):
if isinstance(weather, list):
weather = json.dumps(weather, ensure_ascii=False)
result = openai_chat_model(
f"Please Summarize weather condition and make user better understand it: \n {weather}"
)
return result
def extract_location(text: str, **kwargs):
host = kwargs.get("host", HOST)
port = kwargs.get("port", PORT)
url = f"http://{host}:{port}/extract_location"
data = {"text": text}
response = requests.post(url, data=data)
return response.json()
def sentiment_analysis(text: str, **kwargs):
host = kwargs.get("host", HOST)
port = kwargs.get("port", PORT)
url = f"http://{host}:{port}/sentiment_analysis"
data = {"text": text}
response = requests.post(url, data=data)
return response.json()
|