File size: 4,303 Bytes
3fdcc70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from typing import List, Optional, Dict
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage,
    BaseMessage,
)

from .utils import count_tokens, get_max_context_length


class MessageMemory:
    def __init__(
        self,
        max_tokens: int = -1,
        margin: int = 1500,
        messages: Optional[List[BaseMessage]] = None,
    ) -> None:
        self.max_tokens = max_tokens if max_tokens > 0 else 8e8
        self.margin = margin
        self.init_messages(messages)

    def reset(self) -> List[BaseMessage]:
        self.init_messages()
        return self.stored_messages

    def init_messages(self, messages=None) -> None:
        if messages is not None:
            self.stored_messages = messages
        else:
            self.stored_messages = []

    @classmethod
    def to_messages(cls, items: List[Dict]):
        messages = []
        for m in items:
            if (
                not isinstance(m, dict)
                or m.get("role", None) is None
                or m.get("role") not in ["user", "assistant", "system"]
            ):
                raise TypeError()

            if m["role"] == "system":
                messages.append(SystemMessage(content=m["content"]))
            elif m["role"] == "user":
                messages.append(HumanMessage(content=m["content"]))
            elif m["role"] == "assistant":
                messages.append(AIMessage(content=m["content"]))

        return messages

    def to_dict(self):
        messages = []
        for m in self.stored_messages:
            if not isinstance(m, BaseMessage) or m.type is None:
                raise TypeError()

            if isinstance(m, SystemMessage):
                messages.append({"role": "system", "content": m.content})
            elif isinstance(m, HumanMessage):
                messages.append({"role": "user", "content": m.content})
            elif isinstance(m, AIMessage):
                messages.append({"role": "assistant", "content": m.content})

        return messages

    def get_memory(self):
        return self.stored_messages

    def update_message(self, message: BaseMessage) -> List[BaseMessage]:
        self.stored_messages.append(message)
        return self.stored_messages

    def insert_messages(
        self, idx: int = 0, messages: List[BaseMessage] = None
    ) -> List[BaseMessage]:
        for m in messages[::-1]:
            self.stored_messages.insert(idx, m)
        return self.stored_messages

    @classmethod
    def messages2str(self, history):
        history_text = ""
        for m in history:
            if isinstance(m, SystemMessage):
                history_text += "<system>: " + m.content + "\n"
            elif isinstance(m, HumanMessage):
                history_text += "<user>: " + m.content + "\n"
            elif isinstance(m, AIMessage):
                history_text += "<assistant>: " + m.content + "\n"
        return history_text

    def memory2str(self):
        return self.messages2str(self.stored_messages)

    def cut_memory(self, LLM_encoding: str):
        start = 0
        while start <= len(self.stored_messages):
            # print(f'self.stored_messages = {self.stored_messages}')
            history = self.stored_messages[start:]
            history_text = self.messages2str(history)
            num = count_tokens(LLM_encoding, history_text)
            max_tokens = min(self.max_tokens, get_max_context_length(LLM_encoding))
            if max_tokens - num > self.margin:
                self.stored_messages = self.stored_messages[start:]
                return self.stored_messages

            start += 1
        self.init_messages()
        return self.stored_messages


if __name__ == "__main__":
    import os

    os.environ["TIKTOKEN_CACHE_DIR"] = "/mnt/petrelfs/liuzhaoyang/workspace/tmp"
    messages = [
        SystemMessage(content="SystemMessage 1"),
        HumanMessage(content="Remember a = 5 * 4."),
        AIMessage(content="SystemMessage 2"),
        HumanMessage(content="what is the value of a?"),
    ] * 400
    print(SystemMessage(content="SystemMessage 1").content)
    print(len(messages))
    mem = MessageMemory(
        -1,
        messages,
    )
    messages = mem.cut_memory("gpt-3.5-turbo")
    print(len(messages))