File size: 7,943 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import rich
import random
import pickle
import codecs as cs
import numpy as np
from torch.utils import data
from rich.progress import track
from os.path import join as pjoin


class Text2MotionDataset(data.Dataset):

    def __init__(
        self,
        data_root,
        split,
        mean,
        std,
        max_motion_length=196,
        min_motion_length=40,
        unit_length=4,
        fps=20,
        tmpFile=True,
        tiny=False,
        debug=False,
        **kwargs,
    ):

        # restrian the length of motion and text
        self.max_length = 20
        self.max_motion_length = max_motion_length
        self.min_motion_length = min_motion_length
        self.unit_length = unit_length

        # Data mean and std
        self.mean = mean
        self.std = std

        # Data path
        split_file = pjoin(data_root, split + '.txt')
        motion_dir = pjoin(data_root, 'new_joint_vecs')
        text_dir = pjoin(data_root, 'texts')

        # Data id list
        self.id_list = []
        with cs.open(split_file, "r") as f:
            for line in f.readlines():
                self.id_list.append(line.strip())

        # Debug mode
        if tiny or debug:
            enumerator = enumerate(self.id_list)
            maxdata = 100
            subset = '_tiny'
        else:
            enumerator = enumerate(
                track(
                    self.id_list,
                    f"Loading HumanML3D {split}",
                ))
            maxdata = 1e10
            subset = ''

        new_name_list = []
        length_list = []
        data_dict = {}

        # Fast loading
        if os.path.exists(pjoin(data_root, f'tmp/{split}{subset}_data.pkl')):
            if tiny or debug:
                with open(pjoin(data_root, f'tmp/{split}{subset}_data.pkl'),
                          'rb') as file:
                    data_dict = pickle.load(file)
            else:
                with rich.progress.open(
                        pjoin(data_root, f'tmp/{split}{subset}_data.pkl'),
                        'rb',
                        description=f"Loading HumanML3D {split}") as file:
                    data_dict = pickle.load(file)
            with open(pjoin(data_root, f'tmp/{split}{subset}_index.pkl'),
                      'rb') as file:
                name_list = pickle.load(file)
            for name in new_name_list:
                length_list.append(data_dict[name]['length'])

        else:
            for idx, name in enumerator:
                if len(new_name_list) > maxdata:
                    break
                try:
                    motion = np.load(pjoin(motion_dir, name + ".npy"))
                    if (len(motion)) < self.min_motion_length or (len(motion)
                                                                  >= 200):
                        continue

                    # Read text
                    text_data = []
                    flag = False
                    with cs.open(pjoin(text_dir, name + '.txt')) as f:
                        lines = f.readlines()
                        for line in lines:
                            text_dict = {}
                            line_split = line.strip().split('#')
                            caption = line_split[0]
                            t_tokens = line_split[1].split(' ')
                            f_tag = float(line_split[2])
                            to_tag = float(line_split[3])
                            f_tag = 0.0 if np.isnan(f_tag) else f_tag
                            to_tag = 0.0 if np.isnan(to_tag) else to_tag

                            text_dict['caption'] = caption
                            text_dict['tokens'] = t_tokens
                            if f_tag == 0.0 and to_tag == 0.0:
                                flag = True
                                text_data.append(text_dict)
                            else:
                                motion_new = motion[int(f_tag *
                                                        fps):int(to_tag * fps)]
                                if (len(motion_new)
                                    ) < self.min_motion_length or (
                                        len(motion_new) >= 200):
                                    continue
                                new_name = random.choice(
                                    'ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                                while new_name in new_name_list:
                                    new_name = random.choice(
                                        'ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
                                name_count = 1
                                while new_name in data_dict:
                                    new_name += '_' + name_count
                                    name_count += 1
                                data_dict[new_name] = {
                                    'motion': motion_new,
                                    "length": len(motion_new),
                                    'text': [text_dict]
                                }
                                new_name_list.append(new_name)
                                length_list.append(len(motion_new))

                    if flag:
                        data_dict[name] = {
                            'motion': motion,
                            "length": len(motion),
                            'text': text_data
                        }
                        new_name_list.append(name)
                        length_list.append(len(motion))
                except:
                    pass

            name_list, length_list = zip(
                *sorted(zip(new_name_list, length_list), key=lambda x: x[1]))

            if tmpFile:
                os.makedirs(pjoin(data_root, 'tmp'), exist_ok=True)
                with open(pjoin(data_root, f'tmp/{split}{subset}_data.pkl'),
                          'wb') as file:
                    pickle.dump(data_dict, file)
                with open(pjoin(data_root, f'tmp/{split}{subset}_index.pkl'),
                          'wb') as file:
                    pickle.dump(name_list, file)

        self.length_arr = np.array(length_list)
        self.data_dict = data_dict
        self.name_list = name_list
        self.nfeats = data_dict[name_list[0]]['motion'].shape[1]
        self.reset_max_len(self.max_length)

    def reset_max_len(self, length):
        assert length <= self.max_motion_length
        self.pointer = np.searchsorted(self.length_arr, length)
        print("Pointer Pointing at %d" % self.pointer)
        self.max_length = length

    def __len__(self):
        return len(self.name_list) - self.pointer

    def __getitem__(self, item):
        idx = self.pointer + item
        data = self.data_dict[self.name_list[idx]]
        motion, m_length, text_list = data["motion"], data["length"], data[
            "text"]

        # Randomly select a caption
        text_data = random.choice(text_list)
        caption = text_data["caption"]

        all_captions = [
            ' '.join([token.split('/')[0] for token in text_dic['tokens']])
            for text_dic in text_list
        ]

        # Crop the motions in to times of 4, and introduce small variations
        if self.unit_length < 10:
            coin2 = np.random.choice(["single", "single", "double"])
        else:
            coin2 = "single"

        if coin2 == "double":
            m_length = (m_length // self.unit_length - 1) * self.unit_length
        elif coin2 == "single":
            m_length = (m_length // self.unit_length) * self.unit_length

        idx = random.randint(0, len(motion) - m_length)
        motion = motion[idx:idx + m_length]

        # Z Normalization
        motion = (motion - self.mean) / self.std

        return caption, motion, m_length, None, None, None, None, all_captions