File size: 7,252 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import rich
import random
import pickle
import os
import numpy as np
import codecs as cs
from torch.utils import data
from os.path import join as pjoin
from rich.progress import track
import json
import spacy

class Text2MotionDatasetCB(data.Dataset):
    def __init__(
        self,
        data_root,
        split,
        mean,
        std,
        max_motion_length=196,
        min_motion_length=20,
        unit_length=4,
        fps=20,
        tmpFile=True,
        tiny=False,
        debug=False,
        stage='lm_pretrain',
        code_path='VQVAE',
        task_path=None,
        std_text=False,
        **kwargs,
    ):
        self.tiny = tiny
        self.unit_length = unit_length

        # Data mean and std
        self.mean = mean
        self.std = std

        # Data path
        split = 'train'
        split_file = pjoin(data_root, split + '.txt')
        motion_dir = pjoin(data_root, code_path)
        text_dir = pjoin(data_root, 'texts')
        
        if task_path:
            instructions = task_path
        elif stage == 'lm_pretrain':
            instructions = pjoin(data_root, 'template_pretrain.json')
        elif stage in ['lm_instruct', "lm_rl"]:
            instructions = pjoin(data_root, 'template_instructions.json')
        else:
            raise NotImplementedError(f"stage {stage} not implemented")

        # Data id list
        self.id_list = []
        with cs.open(split_file, "r") as f:
            for line in f.readlines():
                self.id_list.append(line.strip())

        # Debug mode
        if tiny or debug:
            enumerator = enumerate(self.id_list)
            maxdata = 100
            subset = '_tiny'
        else:
            enumerator = enumerate(
                track(
                    self.id_list,
                    f"Loading HumanML3D {split}",
                ))
            maxdata = 1e10
            subset = ''

        new_name_list = []
        data_dict = {}

        # Fast loading
        for i, name in enumerator:
            if len(new_name_list) > maxdata:
                break
            try:
                # Load motion tokens
                m_token_list = np.load(pjoin(motion_dir, f'{name}.npy'))
                # Read text
                with cs.open(pjoin(text_dir, name + '.txt')) as f:
                    text_data = []
                    flag = False
                    lines = f.readlines()

                    for line in lines:
                        try:
                            text_dict = {}
                            line_split = line.strip().split('#')
                            caption = line_split[0]
                            t_tokens = line_split[1].split(' ')
                            f_tag = float(line_split[2])
                            to_tag = float(line_split[3])
                            f_tag = 0.0 if np.isnan(f_tag) else f_tag
                            to_tag = 0.0 if np.isnan(to_tag) else to_tag

                            text_dict['caption'] = caption
                            text_dict['tokens'] = t_tokens
                            if f_tag == 0.0 and to_tag == 0.0:
                                flag = True
                                text_data.append(text_dict)
                            else:
                                m_token_list_new = [
                                    tokens[int(f_tag * fps / unit_length
                                                ):int(to_tag * fps /
                                                        unit_length)]
                                    for tokens in m_token_list
                                    if int(f_tag * fps / unit_length) <
                                    int(to_tag * fps / unit_length)
                                ]

                                if len(m_token_list_new) == 0:
                                    continue
                                new_name = '%s_%f_%f' % (name, f_tag,
                                                            to_tag)

                                data_dict[new_name] = {
                                    'm_token_list': m_token_list_new,
                                    'text': [text_dict]
                                }
                                new_name_list.append(new_name)
                        except:
                            pass

                if flag:
                    data_dict[name] = {
                        'm_token_list': m_token_list,
                        'text': text_data
                    }
                    new_name_list.append(name)
            except:
                pass

        if tmpFile:
            os.makedirs(pjoin(data_root, 'tmp'), exist_ok=True)
            with open(
                    pjoin(data_root,
                            f'tmp/{split}{subset}_tokens_data.pkl'),
                    'wb') as file:
                pickle.dump(data_dict, file)
            with open(
                    pjoin(data_root,
                            f'tmp/{split}{subset}_tokens_index.pkl'),
                    'wb') as file:
                pickle.dump(new_name_list, file)

        self.data_dict = data_dict
        self.name_list = new_name_list
        self.nlp = spacy.load('en_core_web_sm')
        self.std_text = std_text
        self.instructions = json.load(open(instructions, 'r'))
        self.tasks = []
        for task in self.instructions.keys():
            for subtask in self.instructions[task].keys():
                self.tasks.append(self.instructions[task][subtask])

    def __len__(self):
        return len(self.name_list) * len(self.tasks)

    def __getitem__(self, item):
        data_idx = item % len(self.name_list)
        task_idx = item // len(self.name_list)

        data = self.data_dict[self.name_list[data_idx]]
        m_token_list, text_list = data['m_token_list'], data['text']

        m_tokens = random.choice(m_token_list)
        text_data = random.choice(text_list)
        caption = text_data['caption']
        if self.std_text:
            doc = self.nlp(caption)
            word_list = []
            pos_list = []
            for token in doc:
                word = token.text
                if not word.isalpha():
                    continue
                if (token.pos_ == 'NOUN'
                        or token.pos_ == 'VERB') and (word != 'left'):
                    word_list.append(token.lemma_)
                else:
                    word_list.append(word)
                pos_list.append(token.pos_)
                
            caption = ' '.join(word_list)
        
        all_captions = [
            ' '.join([token.split('/')[0] for token in text_dic['tokens']])
            for text_dic in text_list
        ]

        coin = np.random.choice([False, False, True])

        if coin:
            # drop one token at the head or tail
            coin2 = np.random.choice([True, False])
            if coin2:
                m_tokens = m_tokens[:-1]
            else:
                m_tokens = m_tokens[1:]

        m_tokens_len = m_tokens.shape[0]

        tasks = self.tasks[task_idx]

        return caption, m_tokens, m_tokens_len, None, None, None, None, all_captions, tasks