File size: 12,715 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import torch
import os, sys
import pickle
import smplx
import numpy as np
from tqdm import tqdm

sys.path.append(os.path.dirname(__file__))
from customloss import (camera_fitting_loss, 
                        body_fitting_loss, 
                        camera_fitting_loss_3d,
                        body_fitting_loss_3d, 
                        )
from prior import MaxMixturePrior
import config



@torch.no_grad()
def guess_init_3d(model_joints, 
                  j3d, 
                  joints_category="orig"):
    """Initialize the camera translation via triangle similarity, by using the torso joints        .
    :param model_joints: SMPL model with pre joints
    :param j3d: 25x3 array of Kinect Joints
    :returns: 3D vector corresponding to the estimated camera translation
    """
    # get the indexed four
    gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder']
    gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
    
    if joints_category=="orig":
        joints_ind_category = [config.JOINT_MAP[joint] for joint in gt_joints]
    elif joints_category=="AMASS":
        joints_ind_category = [config.AMASS_JOINT_MAP[joint] for joint in gt_joints] 
    elif joints_category=="MMM":
        joints_ind_category = [config.MMM_JOINT_MAP[joint] for joint in gt_joints] 
    else:
        print("NO SUCH JOINTS CATEGORY!") 

    sum_init_t = (j3d[:, joints_ind_category] - model_joints[:, gt_joints_ind]).sum(dim=1)
    init_t = sum_init_t / 4.0
    return init_t


# SMPLIfy 3D
class SMPLify3D():
    """Implementation of SMPLify, use 3D joints."""

    def __init__(self,
                 smplxmodel,
                 step_size=1e-2,
                 batch_size=1,
                 num_iters=100,
                 use_collision=False,
                 use_lbfgs=True,
                 joints_category="orig",
                 device=torch.device('cuda:0'),
                 ):

        # Store options
        self.batch_size = batch_size
        self.device = device
        self.step_size = step_size

        self.num_iters = num_iters
        # --- choose optimizer
        self.use_lbfgs = use_lbfgs
        # GMM pose prior
        self.pose_prior = MaxMixturePrior(prior_folder=config.GMM_MODEL_DIR,
                                          num_gaussians=8,
                                          dtype=torch.float32).to(device)
        # collision part
        self.use_collision = use_collision
        if self.use_collision:
            self.part_segm_fn = config.Part_Seg_DIR
        
        # reLoad SMPL-X model
        self.smpl = smplxmodel

        self.model_faces = smplxmodel.faces_tensor.view(-1)

        # select joint joint_category
        self.joints_category = joints_category
        
        if joints_category=="orig":
            self.smpl_index = config.full_smpl_idx
            self.corr_index = config.full_smpl_idx 
        elif joints_category=="AMASS":
            self.smpl_index = config.amass_smpl_idx
            self.corr_index = config.amass_idx
        # elif joints_category=="MMM":
        #     self.smpl_index = config.mmm_smpl_dix
        #     self.corr_index = config.mmm_idx
        else:
            self.smpl_index = None 
            self.corr_index = None
            print("NO SUCH JOINTS CATEGORY!")

    # ---- get the man function here ------
    def __call__(self, init_pose, init_betas, init_cam_t, j3d, conf_3d=1.0, seq_ind=0):
        """Perform body fitting.
        Input:
            init_pose: SMPL pose estimate
            init_betas: SMPL betas estimate
            init_cam_t: Camera translation estimate
            j3d: joints 3d aka keypoints
            conf_3d: confidence for 3d joints
			seq_ind: index of the sequence
        Returns:
            vertices: Vertices of optimized shape
            joints: 3D joints of optimized shape
            pose: SMPL pose parameters of optimized shape
            betas: SMPL beta parameters of optimized shape
            camera_translation: Camera translation
        """

        # # # add the mesh inter-section to avoid
        search_tree = None
        pen_distance = None
        filter_faces = None
        
        if self.use_collision:
            from mesh_intersection.bvh_search_tree import BVH
            import mesh_intersection.loss as collisions_loss
            from mesh_intersection.filter_faces import FilterFaces

            search_tree = BVH(max_collisions=8)

            pen_distance = collisions_loss.DistanceFieldPenetrationLoss(
                           sigma=0.5, point2plane=False, vectorized=True, penalize_outside=True)

            if self.part_segm_fn:
                # Read the part segmentation
                part_segm_fn = os.path.expandvars(self.part_segm_fn)
                with open(part_segm_fn, 'rb') as faces_parents_file:
                    face_segm_data = pickle.load(faces_parents_file,  encoding='latin1')
                faces_segm = face_segm_data['segm']
                faces_parents = face_segm_data['parents']
                # Create the module used to filter invalid collision pairs
                filter_faces = FilterFaces(
                    faces_segm=faces_segm, faces_parents=faces_parents,
                    ign_part_pairs=None).to(device=self.device)
                    
                    
        # Split SMPL pose to body pose and global orientation
        body_pose = init_pose[:, 3:].detach().clone()
        global_orient = init_pose[:, :3].detach().clone()
        betas = init_betas.detach().clone()

        # use guess 3d to get the initial
        smpl_output = self.smpl(global_orient=global_orient,
                                body_pose=body_pose,
                                betas=betas)
        model_joints = smpl_output.joints

        init_cam_t = guess_init_3d(model_joints, j3d, self.joints_category).detach()
        camera_translation = init_cam_t.clone()
        
        preserve_pose = init_pose[:, 3:].detach().clone()
       # -------------Step 1: Optimize camera translation and body orientation--------
        # Optimize only camera translation and body orientation
        body_pose.requires_grad = False
        betas.requires_grad = False
        global_orient.requires_grad = True
        camera_translation.requires_grad = True

        camera_opt_params = [global_orient, camera_translation]

        if self.use_lbfgs:
            camera_optimizer = torch.optim.LBFGS(camera_opt_params, max_iter=self.num_iters,
                                                 lr=self.step_size, line_search_fn='strong_wolfe')
            for i in range(10):
                def closure():
                    camera_optimizer.zero_grad()
                    smpl_output = self.smpl(global_orient=global_orient,
                                            body_pose=body_pose,
                                            betas=betas)
                    model_joints = smpl_output.joints

                    loss = camera_fitting_loss_3d(model_joints, camera_translation,
                                                  init_cam_t, j3d, self.joints_category)
                    loss.backward()
                    return loss

                camera_optimizer.step(closure)
        else:
            camera_optimizer = torch.optim.Adam(camera_opt_params, lr=self.step_size, betas=(0.9, 0.999))

            for i in range(20):
                smpl_output = self.smpl(global_orient=global_orient,
                                        body_pose=body_pose,
                                        betas=betas)
                model_joints = smpl_output.joints

                loss = camera_fitting_loss_3d(model_joints[:, self.smpl_index], camera_translation,
                                              init_cam_t,  j3d[:, self.corr_index], self.joints_category)
                camera_optimizer.zero_grad()
                loss.backward()
                camera_optimizer.step()

        # Fix camera translation after optimizing camera
        # --------Step 2: Optimize body joints --------------------------
        # Optimize only the body pose and global orientation of the body
        body_pose.requires_grad = True
        global_orient.requires_grad = True
        camera_translation.requires_grad = True

        # --- if we use the sequence, fix the shape
        if seq_ind == 0:
            betas.requires_grad = True
            body_opt_params = [body_pose, betas, global_orient, camera_translation]
        else:
            betas.requires_grad = False
            body_opt_params = [body_pose, global_orient, camera_translation]

        if self.use_lbfgs:
            body_optimizer = torch.optim.LBFGS(body_opt_params, max_iter=self.num_iters,
                                               lr=self.step_size, line_search_fn='strong_wolfe')
            
            for i in tqdm(range(self.num_iters), desc=f"LBFGS iter: "):
            # for i in range(self.num_iters):
                def closure():
                    body_optimizer.zero_grad()
                    smpl_output = self.smpl(global_orient=global_orient,
                                            body_pose=body_pose,
                                            betas=betas)
                    model_joints = smpl_output.joints
                    model_vertices = smpl_output.vertices

                    loss = body_fitting_loss_3d(body_pose, preserve_pose, betas, model_joints[:, self.smpl_index], camera_translation,
                                                j3d[:, self.corr_index], self.pose_prior,
                                                joints3d_conf=conf_3d,
                                                joint_loss_weight=600.0,
                                                pose_preserve_weight=5.0,
                                                use_collision=self.use_collision, 
                                                model_vertices=model_vertices, model_faces=self.model_faces,
                                                search_tree=search_tree, pen_distance=pen_distance, filter_faces=filter_faces)
                    loss.backward()
                    return loss

                body_optimizer.step(closure)
        else:
            body_optimizer = torch.optim.Adam(body_opt_params, lr=self.step_size, betas=(0.9, 0.999))

            for i in range(self.num_iters):
                smpl_output = self.smpl(global_orient=global_orient,
                                        body_pose=body_pose,
                                        betas=betas)
                model_joints = smpl_output.joints
                model_vertices = smpl_output.vertices

                loss = body_fitting_loss_3d(body_pose, preserve_pose, betas, model_joints[:, self.smpl_index], camera_translation,
                                            j3d[:, self.corr_index], self.pose_prior,
                                            joints3d_conf=conf_3d,
                                            joint_loss_weight=600.0,
                                            use_collision=self.use_collision, 
                                            model_vertices=model_vertices, model_faces=self.model_faces,
                                            search_tree=search_tree,  pen_distance=pen_distance,  filter_faces=filter_faces)
                body_optimizer.zero_grad()
                loss.backward()
                body_optimizer.step()

        # Get final loss value
        with torch.no_grad():
            smpl_output = self.smpl(global_orient=global_orient,
                                    body_pose=body_pose,
                                    betas=betas, return_full_pose=True)
            model_joints = smpl_output.joints
            model_vertices = smpl_output.vertices

            final_loss = body_fitting_loss_3d(body_pose, preserve_pose, betas, model_joints[:, self.smpl_index], camera_translation,
                                              j3d[:, self.corr_index], self.pose_prior,
                                              joints3d_conf=conf_3d,
                                              joint_loss_weight=600.0,
                                              use_collision=self.use_collision, model_vertices=model_vertices, model_faces=self.model_faces,
                                              search_tree=search_tree,  pen_distance=pen_distance,  filter_faces=filter_faces)

        vertices = smpl_output.vertices.detach()
        joints = smpl_output.joints.detach()
        pose = torch.cat([global_orient, body_pose], dim=-1).detach()
        betas = betas.detach()

        return vertices, joints, pose, betas, camera_translation, final_loss