File size: 4,161 Bytes
4409449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import torch.nn.functional as F
from mGPT.models.notused import AdaptiveInstanceNorm1d


class MLP(nn.Module):

    def __init__(self, cfg, out_dim, is_init):
        super(MLP, self).__init__()
        dims = cfg.MODEL.MOTION_DECODER.MLP_DIM
        n_blk = len(dims)
        norm = 'none'
        acti = 'lrelu'

        layers = []
        for i in range(n_blk - 1):
            layers += LinearBlock(dims[i], dims[i + 1], norm=norm, acti=acti)
        layers += LinearBlock(dims[-1], out_dim, norm='none', acti='none')
        self.model = nn.Sequential(*layers)

        if is_init:
            for m in self.modules():
                if isinstance(m, nn.Linear):
                    #nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                    nn.init.constant_(m.weight, 1)
                elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        return self.model(x.view(x.size(0), -1))


def ZeroPad1d(sizes):
    return nn.ConstantPad1d(sizes, 0)


def get_acti_layer(acti='relu', inplace=True):

    if acti == 'relu':
        return [nn.ReLU(inplace=inplace)]
    elif acti == 'lrelu':
        return [nn.LeakyReLU(0.2, inplace=inplace)]
    elif acti == 'tanh':
        return [nn.Tanh()]
    elif acti == 'none':
        return []
    else:
        assert 0, "Unsupported activation: {}".format(acti)


def get_norm_layer(norm='none', norm_dim=None):

    if norm == 'bn':
        return [nn.BatchNorm1d(norm_dim)]
    elif norm == 'in':
        # return [nn.InstanceNorm1d(norm_dim, affine=False)]  # for rt42!
        return [nn.InstanceNorm1d(norm_dim, affine=True)]
    elif norm == 'adain':
        return [AdaptiveInstanceNorm1d(norm_dim)]
    elif norm == 'none':
        return []
    else:
        assert 0, "Unsupported normalization: {}".format(norm)


def get_dropout_layer(dropout=None):
    if dropout is not None:
        return [nn.Dropout(p=dropout)]
    else:
        return []


def ConvLayers(kernel_size,
               in_channels,
               out_channels,
               stride=1,
               pad_type='reflect',
               use_bias=True):
    """
    returns a list of [pad, conv] => should be += to some list, then apply sequential
    """

    if pad_type == 'reflect':
        pad = nn.ReflectionPad1d
    elif pad_type == 'replicate':
        pad = nn.ReplicationPad1d
    elif pad_type == 'zero':
        pad = ZeroPad1d
    else:
        assert 0, "Unsupported padding type: {}".format(pad_type)

    pad_l = (kernel_size - 1) // 2
    pad_r = kernel_size - 1 - pad_l
    return [
        pad((pad_l, pad_r)),
        nn.Conv1d(in_channels,
                  out_channels,
                  kernel_size=kernel_size,
                  stride=stride,
                  bias=use_bias)
    ]


def ConvBlock(kernel_size,
              in_channels,
              out_channels,
              stride=1,
              pad_type='reflect',
              dropout=None,
              norm='none',
              acti='lrelu',
              acti_first=False,
              use_bias=True,
              inplace=True):
    """
    returns a list of [pad, conv, norm, acti] or [acti, pad, conv, norm]
    """

    layers = ConvLayers(kernel_size,
                        in_channels,
                        out_channels,
                        stride=stride,
                        pad_type=pad_type,
                        use_bias=use_bias)
    layers += get_dropout_layer(dropout)
    layers += get_norm_layer(norm, norm_dim=out_channels)
    acti_layers = get_acti_layer(acti, inplace=inplace)

    if acti_first:
        return acti_layers + layers
    else:
        return layers + acti_layers


def LinearBlock(in_dim, out_dim, dropout=None, norm='none', acti='relu'):

    use_bias = True
    layers = []
    layers.append(nn.Linear(in_dim, out_dim, bias=use_bias))
    layers += get_dropout_layer(dropout)
    layers += get_norm_layer(norm, norm_dim=out_dim)
    layers += get_acti_layer(acti)

    return layers