MotionGPT / mGPT /data /humanml /scripts /motion_process.py
bill-jiang's picture
Init
4409449
raw
history blame
21 kB
from os.path import join as pjoin
from ..common.skeleton import Skeleton
import numpy as np
import os
from ..common.quaternion import *
from ..utils.paramUtil import *
import torch
from tqdm import tqdm
# positions (batch, joint_num, 3)
def uniform_skeleton(positions, target_offset):
src_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
src_offset = src_skel.get_offsets_joints(torch.from_numpy(positions[0]))
src_offset = src_offset.numpy()
tgt_offset = target_offset.numpy()
# print(src_offset)
# print(tgt_offset)
'''Calculate Scale Ratio as the ratio of legs'''
src_leg_len = np.abs(src_offset[l_idx1]).max() + np.abs(src_offset[l_idx2]).max()
tgt_leg_len = np.abs(tgt_offset[l_idx1]).max() + np.abs(tgt_offset[l_idx2]).max()
scale_rt = tgt_leg_len / src_leg_len
# print(scale_rt)
src_root_pos = positions[:, 0]
tgt_root_pos = src_root_pos * scale_rt
'''Inverse Kinematics'''
quat_params = src_skel.inverse_kinematics_np(positions, face_joint_indx)
# print(quat_params.shape)
'''Forward Kinematics'''
src_skel.set_offset(target_offset)
new_joints = src_skel.forward_kinematics_np(quat_params, tgt_root_pos)
return new_joints
def extract_features(positions, feet_thre, n_raw_offsets, kinematic_chain, face_joint_indx, fid_r, fid_l):
global_positions = positions.copy()
""" Get Foot Contacts """
def foot_detect(positions, thres):
velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
# feet_l_h = positions[:-1,fid_l,1]
# feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float64)
feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float64)
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
# feet_r_h = positions[:-1,fid_r,1]
# feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float64)
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float64)
return feet_l, feet_r
#
feet_l, feet_r = foot_detect(positions, feet_thre)
# feet_l, feet_r = foot_detect(positions, 0.002)
'''Quaternion and Cartesian representation'''
r_rot = None
def get_rifke(positions):
'''Local pose'''
positions[..., 0] -= positions[:, 0:1, 0]
positions[..., 2] -= positions[:, 0:1, 2]
'''All pose face Z+'''
positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
return positions
def get_quaternion(positions):
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
# (seq_len, joints_num, 4)
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)
'''Fix Quaternion Discontinuity'''
quat_params = qfix(quat_params)
# (seq_len, 4)
r_rot = quat_params[:, 0].copy()
# print(r_rot[0])
'''Root Linear Velocity'''
# (seq_len - 1, 3)
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
# print(r_rot.shape, velocity.shape)
velocity = qrot_np(r_rot[1:], velocity)
'''Root Angular Velocity'''
# (seq_len - 1, 4)
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
quat_params[1:, 0] = r_velocity
# (seq_len, joints_num, 4)
return quat_params, r_velocity, velocity, r_rot
def get_cont6d_params(positions):
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
# (seq_len, joints_num, 4)
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)
'''Quaternion to continuous 6D'''
cont_6d_params = quaternion_to_cont6d_np(quat_params)
# (seq_len, 4)
r_rot = quat_params[:, 0].copy()
# print(r_rot[0])
'''Root Linear Velocity'''
# (seq_len - 1, 3)
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
# print(r_rot.shape, velocity.shape)
velocity = qrot_np(r_rot[1:], velocity)
'''Root Angular Velocity'''
# (seq_len - 1, 4)
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
# (seq_len, joints_num, 4)
return cont_6d_params, r_velocity, velocity, r_rot
cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
positions = get_rifke(positions)
# trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0)
# r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]])
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
# plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r')
# plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g')
# plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y')
# plt.xlabel('x')
# plt.ylabel('z')
# plt.axis('equal')
# plt.show()
'''Root height'''
root_y = positions[:, 0, 1:2]
'''Root rotation and linear velocity'''
# (seq_len-1, 1) rotation velocity along y-axis
# (seq_len-1, 2) linear velovity on xz plane
r_velocity = np.arcsin(r_velocity[:, 2:3])
l_velocity = velocity[:, [0, 2]]
# print(r_velocity.shape, l_velocity.shape, root_y.shape)
root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)
'''Get Joint Rotation Representation'''
# (seq_len, (joints_num-1) *6) quaternion for skeleton joints
rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)
'''Get Joint Rotation Invariant Position Represention'''
# (seq_len, (joints_num-1)*3) local joint position
ric_data = positions[:, 1:].reshape(len(positions), -1)
'''Get Joint Velocity Representation'''
# (seq_len-1, joints_num*3)
local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
global_positions[1:] - global_positions[:-1])
local_vel = local_vel.reshape(len(local_vel), -1)
data = root_data
data = np.concatenate([data, ric_data[:-1]], axis=-1)
data = np.concatenate([data, rot_data[:-1]], axis=-1)
# print(dataset.shape, local_vel.shape)
data = np.concatenate([data, local_vel], axis=-1)
data = np.concatenate([data, feet_l, feet_r], axis=-1)
return data
def process_file(positions, feet_thre):
# (seq_len, joints_num, 3)
# '''Down Sample'''
# positions = positions[::ds_num]
'''Uniform Skeleton'''
positions = uniform_skeleton(positions, tgt_offsets)
'''Put on Floor'''
floor_height = positions.min(axis=0).min(axis=0)[1]
positions[:, :, 1] -= floor_height
# print(floor_height)
# plot_3d_motion("./positions_1.mp4", kinematic_chain, positions, 'title', fps=20)
'''XZ at origin'''
root_pos_init = positions[0]
root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1])
positions = positions - root_pose_init_xz
# '''Move the first pose to origin '''
# root_pos_init = positions[0]
# positions = positions - root_pos_init[0]
'''All initially face Z+'''
r_hip, l_hip, sdr_r, sdr_l = face_joint_indx
across1 = root_pos_init[r_hip] - root_pos_init[l_hip]
across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l]
across = across1 + across2
across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis]
# forward (3,), rotate around y-axis
forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
# forward (3,)
forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis]
# print(forward_init)
target = np.array([[0, 0, 1]])
root_quat_init = qbetween_np(forward_init, target)
root_quat_init = np.ones(positions.shape[:-1] + (4,)) * root_quat_init
positions_b = positions.copy()
positions = qrot_np(root_quat_init, positions)
# plot_3d_motion("./positions_2.mp4", kinematic_chain, positions, 'title', fps=20)
'''New ground truth positions'''
global_positions = positions.copy()
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
# plt.plot(positions[:, 0, 0], positions[:, 0, 2], marker='o', color='r')
# plt.xlabel('x')
# plt.ylabel('z')
# plt.axis('equal')
# plt.show()
""" Get Foot Contacts """
def foot_detect(positions, thres):
velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
# feet_l_h = positions[:-1,fid_l,1]
# feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float64)
feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float64)
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
# feet_r_h = positions[:-1,fid_r,1]
# feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float64)
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float64)
return feet_l, feet_r
#
feet_l, feet_r = foot_detect(positions, feet_thre)
# feet_l, feet_r = foot_detect(positions, 0.002)
'''Quaternion and Cartesian representation'''
r_rot = None
def get_rifke(positions):
'''Local pose'''
positions[..., 0] -= positions[:, 0:1, 0]
positions[..., 2] -= positions[:, 0:1, 2]
'''All pose face Z+'''
positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
return positions
def get_quaternion(positions):
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
# (seq_len, joints_num, 4)
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)
'''Fix Quaternion Discontinuity'''
quat_params = qfix(quat_params)
# (seq_len, 4)
r_rot = quat_params[:, 0].copy()
# print(r_rot[0])
'''Root Linear Velocity'''
# (seq_len - 1, 3)
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
# print(r_rot.shape, velocity.shape)
velocity = qrot_np(r_rot[1:], velocity)
'''Root Angular Velocity'''
# (seq_len - 1, 4)
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
quat_params[1:, 0] = r_velocity
# (seq_len, joints_num, 4)
return quat_params, r_velocity, velocity, r_rot
def get_cont6d_params(positions):
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
# (seq_len, joints_num, 4)
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)
'''Quaternion to continuous 6D'''
cont_6d_params = quaternion_to_cont6d_np(quat_params)
# (seq_len, 4)
r_rot = quat_params[:, 0].copy()
# print(r_rot[0])
'''Root Linear Velocity'''
# (seq_len - 1, 3)
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
# print(r_rot.shape, velocity.shape)
velocity = qrot_np(r_rot[1:], velocity)
'''Root Angular Velocity'''
# (seq_len - 1, 4)
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
# (seq_len, joints_num, 4)
return cont_6d_params, r_velocity, velocity, r_rot
cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
positions = get_rifke(positions)
# trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0)
# r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]])
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
# plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r')
# plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g')
# plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y')
# plt.xlabel('x')
# plt.ylabel('z')
# plt.axis('equal')
# plt.show()
'''Root height'''
root_y = positions[:, 0, 1:2]
'''Root rotation and linear velocity'''
# (seq_len-1, 1) rotation velocity along y-axis
# (seq_len-1, 2) linear velovity on xz plane
r_velocity = np.arcsin(r_velocity[:, 2:3])
l_velocity = velocity[:, [0, 2]]
# print(r_velocity.shape, l_velocity.shape, root_y.shape)
root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)
'''Get Joint Rotation Representation'''
# (seq_len, (joints_num-1) *6) quaternion for skeleton joints
rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)
'''Get Joint Rotation Invariant Position Represention'''
# (seq_len, (joints_num-1)*3) local joint position
ric_data = positions[:, 1:].reshape(len(positions), -1)
'''Get Joint Velocity Representation'''
# (seq_len-1, joints_num*3)
local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
global_positions[1:] - global_positions[:-1])
local_vel = local_vel.reshape(len(local_vel), -1)
data = root_data
data = np.concatenate([data, ric_data[:-1]], axis=-1)
data = np.concatenate([data, rot_data[:-1]], axis=-1)
# print(dataset.shape, local_vel.shape)
data = np.concatenate([data, local_vel], axis=-1)
data = np.concatenate([data, feet_l, feet_r], axis=-1)
return data, global_positions, positions, l_velocity
# Recover global angle and positions for rotation dataset
# root_rot_velocity (B, seq_len, 1)
# root_linear_velocity (B, seq_len, 2)
# root_y (B, seq_len, 1)
# ric_data (B, seq_len, (joint_num - 1)*3)
# rot_data (B, seq_len, (joint_num - 1)*6)
# local_velocity (B, seq_len, joint_num*3)
# foot contact (B, seq_len, 4)
def recover_root_rot_pos(data):
rot_vel = data[..., 0]
r_rot_ang = torch.zeros_like(rot_vel).to(data.device)
'''Get Y-axis rotation from rotation velocity'''
r_rot_ang[..., 1:] = rot_vel[..., :-1]
r_rot_ang = torch.cumsum(r_rot_ang, dim=-1)
r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device)
r_rot_quat[..., 0] = torch.cos(r_rot_ang)
r_rot_quat[..., 2] = torch.sin(r_rot_ang)
r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device)
r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3]
'''Add Y-axis rotation to root position'''
r_pos = qrot(qinv(r_rot_quat), r_pos)
r_pos = torch.cumsum(r_pos, dim=-2)
r_pos[..., 1] = data[..., 3]
return r_rot_quat, r_pos
def recover_from_rot(data, joints_num, skeleton):
r_rot_quat, r_pos = recover_root_rot_pos(data)
r_rot_cont6d = quaternion_to_cont6d(r_rot_quat)
start_indx = 1 + 2 + 1 + (joints_num - 1) * 3
end_indx = start_indx + (joints_num - 1) * 6
cont6d_params = data[..., start_indx:end_indx]
# print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape)
cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1)
cont6d_params = cont6d_params.view(-1, joints_num, 6)
positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos)
return positions
def recover_rot(data):
# dataset [bs, seqlen, 263/251] HumanML/KIT
joints_num = 22 if data.shape[-1] == 263 else 21
r_rot_quat, r_pos = recover_root_rot_pos(data)
r_pos_pad = torch.cat([r_pos, torch.zeros_like(r_pos)], dim=-1).unsqueeze(-2)
r_rot_cont6d = quaternion_to_cont6d(r_rot_quat)
start_indx = 1 + 2 + 1 + (joints_num - 1) * 3
end_indx = start_indx + (joints_num - 1) * 6
cont6d_params = data[..., start_indx:end_indx]
cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1)
cont6d_params = cont6d_params.view(-1, joints_num, 6)
cont6d_params = torch.cat([cont6d_params, r_pos_pad], dim=-2)
return cont6d_params
def recover_from_ric(data, joints_num):
r_rot_quat, r_pos = recover_root_rot_pos(data)
positions = data[..., 4:(joints_num - 1) * 3 + 4]
positions = positions.view(positions.shape[:-1] + (-1, 3))
'''Add Y-axis rotation to local joints'''
positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions)
'''Add root XZ to joints'''
positions[..., 0] += r_pos[..., 0:1]
positions[..., 2] += r_pos[..., 2:3]
'''Concate root and joints'''
positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2)
return positions
'''
For Text2Motion Dataset
'''
'''
if __name__ == "__main__":
example_id = "000021"
# Lower legs
l_idx1, l_idx2 = 5, 8
# Right/Left foot
fid_r, fid_l = [8, 11], [7, 10]
# Face direction, r_hip, l_hip, sdr_r, sdr_l
face_joint_indx = [2, 1, 17, 16]
# l_hip, r_hip
r_hip, l_hip = 2, 1
joints_num = 22
# ds_num = 8
data_dir = '../dataset/pose_data_raw/joints/'
save_dir1 = '../dataset/pose_data_raw/new_joints/'
save_dir2 = '../dataset/pose_data_raw/new_joint_vecs/'
n_raw_offsets = torch.from_numpy(t2m_raw_offsets)
kinematic_chain = t2m_kinematic_chain
# Get offsets of target skeleton
example_data = np.load(os.path.join(data_dir, example_id + '.npy'))
example_data = example_data.reshape(len(example_data), -1, 3)
example_data = torch.from_numpy(example_data)
tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
# (joints_num, 3)
tgt_offsets = tgt_skel.get_offsets_joints(example_data[0])
# print(tgt_offsets)
source_list = os.listdir(data_dir)
frame_num = 0
for source_file in tqdm(source_list):
source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num]
try:
dataset, ground_positions, positions, l_velocity = process_file(source_data, 0.002)
rec_ric_data = recover_from_ric(torch.from_numpy(dataset).unsqueeze(0).float(), joints_num)
np.save(pjoin(save_dir1, source_file), rec_ric_data.squeeze().numpy())
np.save(pjoin(save_dir2, source_file), dataset)
frame_num += dataset.shape[0]
except Exception as e:
print(source_file)
print(e)
print('Total clips: %d, Frames: %d, Duration: %fm' %
(len(source_list), frame_num, frame_num / 20 / 60))
'''
if __name__ == "__main__":
example_id = "03950_gt"
# Lower legs
l_idx1, l_idx2 = 17, 18
# Right/Left foot
fid_r, fid_l = [14, 15], [19, 20]
# Face direction, r_hip, l_hip, sdr_r, sdr_l
face_joint_indx = [11, 16, 5, 8]
# l_hip, r_hip
r_hip, l_hip = 11, 16
joints_num = 21
# ds_num = 8
data_dir = '../dataset/kit_mocap_dataset/joints/'
save_dir1 = '../dataset/kit_mocap_dataset/new_joints/'
save_dir2 = '../dataset/kit_mocap_dataset/new_joint_vecs/'
n_raw_offsets = torch.from_numpy(kit_raw_offsets)
kinematic_chain = kit_kinematic_chain
'''Get offsets of target skeleton'''
example_data = np.load(os.path.join(data_dir, example_id + '.npy'))
example_data = example_data.reshape(len(example_data), -1, 3)
example_data = torch.from_numpy(example_data)
tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
# (joints_num, 3)
tgt_offsets = tgt_skel.get_offsets_joints(example_data[0])
# print(tgt_offsets)
source_list = os.listdir(data_dir)
frame_num = 0
'''Read source dataset'''
for source_file in tqdm(source_list):
source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num]
try:
name = ''.join(source_file[:-7].split('_')) + '.npy'
data, ground_positions, positions, l_velocity = process_file(source_data, 0.05)
rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num)
if np.isnan(rec_ric_data.numpy()).any():
print(source_file)
continue
np.save(pjoin(save_dir1, name), rec_ric_data.squeeze().numpy())
np.save(pjoin(save_dir2, name), data)
frame_num += data.shape[0]
except Exception as e:
print(source_file)
print(e)
print('Total clips: %d, Frames: %d, Duration: %fm' %
(len(source_list), frame_num, frame_num / 12.5 / 60))