bill-jiang's picture
Init
4409449
raw
history blame
8.68 kB
import torch
import torch.nn.functional as F
import config
# Guassian
def gmof(x, sigma):
"""
Geman-McClure error function
"""
x_squared = x ** 2
sigma_squared = sigma ** 2
return (sigma_squared * x_squared) / (sigma_squared + x_squared)
# angle prior
def angle_prior(pose):
"""
Angle prior that penalizes unnatural bending of the knees and elbows
"""
# We subtract 3 because pose does not include the global rotation of the model
return torch.exp(
pose[:, [55 - 3, 58 - 3, 12 - 3, 15 - 3]] * torch.tensor([1., -1., -1, -1.], device=pose.device)) ** 2
def perspective_projection(points, rotation, translation,
focal_length, camera_center):
"""
This function computes the perspective projection of a set of points.
Input:
points (bs, N, 3): 3D points
rotation (bs, 3, 3): Camera rotation
translation (bs, 3): Camera translation
focal_length (bs,) or scalar: Focal length
camera_center (bs, 2): Camera center
"""
batch_size = points.shape[0]
K = torch.zeros([batch_size, 3, 3], device=points.device)
K[:, 0, 0] = focal_length
K[:, 1, 1] = focal_length
K[:, 2, 2] = 1.
K[:, :-1, -1] = camera_center
# Transform points
points = torch.einsum('bij,bkj->bki', rotation, points)
points = points + translation.unsqueeze(1)
# Apply perspective distortion
projected_points = points / points[:, :, -1].unsqueeze(-1)
# Apply camera intrinsics
projected_points = torch.einsum('bij,bkj->bki', K, projected_points)
return projected_points[:, :, :-1]
def body_fitting_loss(body_pose, betas, model_joints, camera_t, camera_center,
joints_2d, joints_conf, pose_prior,
focal_length=5000, sigma=100, pose_prior_weight=4.78,
shape_prior_weight=5, angle_prior_weight=15.2,
output='sum'):
"""
Loss function for body fitting
"""
batch_size = body_pose.shape[0]
rotation = torch.eye(3, device=body_pose.device).unsqueeze(0).expand(batch_size, -1, -1)
projected_joints = perspective_projection(model_joints, rotation, camera_t,
focal_length, camera_center)
# Weighted robust reprojection error
reprojection_error = gmof(projected_joints - joints_2d, sigma)
reprojection_loss = (joints_conf ** 2) * reprojection_error.sum(dim=-1)
# Pose prior loss
pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas)
# Angle prior for knees and elbows
angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1)
# Regularizer to prevent betas from taking large values
shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1)
total_loss = reprojection_loss.sum(dim=-1) + pose_prior_loss + angle_prior_loss + shape_prior_loss
if output == 'sum':
return total_loss.sum()
elif output == 'reprojection':
return reprojection_loss
# --- get camera fitting loss -----
def camera_fitting_loss(model_joints, camera_t, camera_t_est, camera_center,
joints_2d, joints_conf,
focal_length=5000, depth_loss_weight=100):
"""
Loss function for camera optimization.
"""
# Project model joints
batch_size = model_joints.shape[0]
rotation = torch.eye(3, device=model_joints.device).unsqueeze(0).expand(batch_size, -1, -1)
projected_joints = perspective_projection(model_joints, rotation, camera_t,
focal_length, camera_center)
# get the indexed four
op_joints = ['OP RHip', 'OP LHip', 'OP RShoulder', 'OP LShoulder']
op_joints_ind = [config.JOINT_MAP[joint] for joint in op_joints]
gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder']
gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
reprojection_error_op = (joints_2d[:, op_joints_ind] -
projected_joints[:, op_joints_ind]) ** 2
reprojection_error_gt = (joints_2d[:, gt_joints_ind] -
projected_joints[:, gt_joints_ind]) ** 2
# Check if for each example in the batch all 4 OpenPose detections are valid, otherwise use the GT detections
# OpenPose joints are more reliable for this task, so we prefer to use them if possible
is_valid = (joints_conf[:, op_joints_ind].min(dim=-1)[0][:, None, None] > 0).float()
reprojection_loss = (is_valid * reprojection_error_op + (1 - is_valid) * reprojection_error_gt).sum(dim=(1, 2))
# Loss that penalizes deviation from depth estimate
depth_loss = (depth_loss_weight ** 2) * (camera_t[:, 2] - camera_t_est[:, 2]) ** 2
total_loss = reprojection_loss + depth_loss
return total_loss.sum()
# #####--- body fitiing loss -----
def body_fitting_loss_3d(body_pose, preserve_pose,
betas, model_joints, camera_translation,
j3d, pose_prior,
joints3d_conf,
sigma=100, pose_prior_weight=4.78*1.5,
shape_prior_weight=5.0, angle_prior_weight=15.2,
joint_loss_weight=500.0,
pose_preserve_weight=0.0,
use_collision=False,
model_vertices=None, model_faces=None,
search_tree=None, pen_distance=None, filter_faces=None,
collision_loss_weight=1000
):
"""
Loss function for body fitting
"""
batch_size = body_pose.shape[0]
#joint3d_loss = (joint_loss_weight ** 2) * gmof((model_joints + camera_translation) - j3d, sigma).sum(dim=-1)
joint3d_error = gmof((model_joints + camera_translation) - j3d, sigma)
joint3d_loss_part = (joints3d_conf ** 2) * joint3d_error.sum(dim=-1)
joint3d_loss = (joint_loss_weight ** 2) * joint3d_loss_part
# Pose prior loss
pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas)
# Angle prior for knees and elbows
angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1)
# Regularizer to prevent betas from taking large values
shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1)
collision_loss = 0.0
# Calculate the loss due to interpenetration
if use_collision:
triangles = torch.index_select(
model_vertices, 1,
model_faces).view(batch_size, -1, 3, 3)
with torch.no_grad():
collision_idxs = search_tree(triangles)
# Remove unwanted collisions
if filter_faces is not None:
collision_idxs = filter_faces(collision_idxs)
if collision_idxs.ge(0).sum().item() > 0:
collision_loss = torch.sum(collision_loss_weight * pen_distance(triangles, collision_idxs))
pose_preserve_loss = (pose_preserve_weight ** 2) * ((body_pose - preserve_pose) ** 2).sum(dim=-1)
total_loss = joint3d_loss + pose_prior_loss + angle_prior_loss + shape_prior_loss + collision_loss + pose_preserve_loss
return total_loss.sum()
# #####--- get camera fitting loss -----
def camera_fitting_loss_3d(model_joints, camera_t, camera_t_est,
j3d, joints_category="orig", depth_loss_weight=100.0):
"""
Loss function for camera optimization.
"""
model_joints = model_joints + camera_t
# # get the indexed four
# op_joints = ['OP RHip', 'OP LHip', 'OP RShoulder', 'OP LShoulder']
# op_joints_ind = [config.JOINT_MAP[joint] for joint in op_joints]
#
# j3d_error_loss = (j3d[:, op_joints_ind] -
# model_joints[:, op_joints_ind]) ** 2
gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder']
gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
if joints_category=="orig":
select_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
elif joints_category=="AMASS":
select_joints_ind = [config.AMASS_JOINT_MAP[joint] for joint in gt_joints]
elif joints_category=="MMM":
select_joints_ind = [config.MMM_JOINT_MAP[joint] for joint in gt_joints]
else:
print("NO SUCH JOINTS CATEGORY!")
j3d_error_loss = (j3d[:, select_joints_ind] -
model_joints[:, gt_joints_ind]) ** 2
# Loss that penalizes deviation from depth estimate
depth_loss = (depth_loss_weight**2) * (camera_t - camera_t_est)**2
total_loss = j3d_error_loss + depth_loss
return total_loss.sum()