MotionGPT / mGPT /archs /tools /token_emb.py
bill-jiang's picture
Init
4409449
raw
history blame
3.17 kB
from torch import Tensor, nn
class NewTokenEmb(nn.Module):
"""
For adding new tokens to a pretrained model
"""
def __init__(self,
old_embeddings: nn.Embedding,
new_num_tokens: int = None) -> None:
super().__init__()
self.num_tokens = old_embeddings.num_embeddings + new_num_tokens
self.old_num_tokens = old_embeddings.num_embeddings
self.new_num_tokens = new_num_tokens
self.embedding_dim = old_embeddings.embedding_dim
# For text embeddings
self.text_embeddings = nn.Embedding(
self.num_tokens,
self.embedding_dim,
device=old_embeddings.weight.device,
dtype=old_embeddings.weight.dtype)
with torch.no_grad():
self.text_embeddings.weight.data[:old_embeddings.
num_embeddings] = old_embeddings.weight.data
self.text_embeddings.weight.data[
self.old_num_tokens:] = torch.zeros(
self.new_num_tokens,
self.embedding_dim,
dtype=old_embeddings.weight.dtype,
device=old_embeddings.weight.device)
self.text_embeddings.weight.requires_grad_(False)
# For motion embeddings
self.motion_embeddings = nn.Embedding(
new_num_tokens,
self.embedding_dim,
device=old_embeddings.weight.device,
dtype=old_embeddings.weight.dtype)
with torch.no_grad():
self.motion_embeddings.weight.data[:self.
old_num_tokens] = torch.zeros(
new_num_tokens,
self.embedding_dim,
dtype=old_embeddings.weight.
dtype,
device=old_embeddings.
weight.device)
self.word2motionProj = nn.Linear(self.old_num_tokens, new_num_tokens)
def forward(self, input: Tensor) -> Tensor:
with torch.no_grad():
self.motion_embeddings.weight.data[:self.
old_num_tokens] = torch.zeros(
self.new_num_tokens,
self.embedding_dim,
dtype=self.motion_embeddings
.weight.dtype,
device=self.
motion_embeddings.weight.
device)
self.motion_embeddings.weight.data[
self.old_num_tokens:] = self.word2motionProj(
self.text_embeddings.weight.data[:self.old_num_tokens].permute(
1, 0)).permute(1, 0)
return self.text_embeddings(input) + self.motion_embeddings(input)