import numpy as np import torch from os.path import join as pjoin from .humanml.utils.word_vectorizer import WordVectorizer from .humanml.scripts.motion_process import (process_file, recover_from_ric) from .HumanML3D import HumanML3DDataModule from .humanml import Text2MotionDatasetEval, Text2MotionDataset, Text2MotionDatasetCB, MotionDataset, MotionDatasetVQ, Text2MotionDatasetToken class KitDataModule(HumanML3DDataModule): def __init__(self, cfg, **kwargs): super().__init__(cfg, **kwargs) # Basic info of the dataset self.name = "kit" self.njoints = 21 # Path to the dataset data_root = cfg.DATASET.KIT.ROOT self.hparams.data_root = data_root self.hparams.text_dir = pjoin(data_root, "texts") self.hparams.motion_dir = pjoin(data_root, 'new_joint_vecs') # Mean and std of the dataset dis_data_root = pjoin(cfg.DATASET.KIT.MEAN_STD_PATH, 'kit', "VQVAEV3_CB1024_CMT_H1024_NRES3", "meta") self.hparams.mean = np.load(pjoin(dis_data_root, "mean.npy")) self.hparams.std = np.load(pjoin(dis_data_root, "std.npy")) # Mean and std for fair evaluation dis_data_root_eval = pjoin(cfg.DATASET.KIT.MEAN_STD_PATH, 't2m', "Comp_v6_KLD005", "meta") self.hparams.mean_eval = np.load(pjoin(dis_data_root_eval, "mean.npy")) self.hparams.std_eval = np.load(pjoin(dis_data_root_eval, "std.npy")) # Length of the dataset self.hparams.max_motion_length = cfg.DATASET.KIT.MAX_MOTION_LEN self.hparams.min_motion_length = cfg.DATASET.KIT.MIN_MOTION_LEN self.hparams.max_text_len = cfg.DATASET.KIT.MAX_TEXT_LEN self.hparams.unit_length = cfg.DATASET.KIT.UNIT_LEN # Get additional info of the dataset self._sample_set = self.get_sample_set(overrides={"split": "test", "tiny": True}) self.nfeats = self._sample_set.nfeats cfg.DATASET.NFEATS = self.nfeats def feats2joints(self, features): mean = torch.tensor(self.hparams.mean).to(features) std = torch.tensor(self.hparams.std).to(features) features = features * std + mean return recover_from_ric(features, self.njoints) def joints2feats(self, features): features = process_file(features, self.njoints)[0] # mean = torch.tensor(self.hparams.mean).to(features) # std = torch.tensor(self.hparams.std).to(features) # features = (features - mean) / std return features def normalize(self, features): mean = torch.tensor(self.hparams.mean).to(features) std = torch.tensor(self.hparams.std).to(features) features = (features - mean) / std return features def renorm4t2m(self, features): # renorm to t2m norms for using t2m evaluators ori_mean = torch.tensor(self.hparams.mean).to(features) ori_std = torch.tensor(self.hparams.std).to(features) eval_mean = torch.tensor(self.hparams.mean_eval).to(features) eval_std = torch.tensor(self.hparams.std_eval).to(features) features = features * ori_std + ori_mean features = (features - eval_mean) / eval_std return features def mm_mode(self, mm_on=True): # random select samples for mm if mm_on: self.is_mm = True self.name_list = self.test_dataset.name_list self.mm_list = np.random.choice(self.name_list, self.cfg.METRIC.MM_NUM_SAMPLES, replace=False) self.test_dataset.name_list = self.mm_list else: self.is_mm = False self.test_dataset.name_list = self.name_list