import numpy as np import torch from torch import nn class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000, batch_first=False): super().__init__() self.batch_first = batch_first self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange( 0, d_model, 2).float() * (-np.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer("pe", pe) def forward(self, x): # not used in the final model if self.batch_first: x = x + self.pe.permute(1, 0, 2)[:, : x.shape[1], :] else: x = x + self.pe[: x.shape[0], :] return self.dropout(x)