import random import numpy as np from torch.utils import data from .dataset_t2m import Text2MotionDataset import codecs as cs from os.path import join as pjoin class Text2MotionDatasetToken(data.Dataset): def __init__( self, data_root, split, mean, std, max_motion_length=196, min_motion_length=40, unit_length=4, fps=20, tmpFile=True, tiny=False, debug=False, **kwargs, ): self.max_motion_length = max_motion_length self.min_motion_length = min_motion_length self.unit_length = unit_length # Data mean and std self.mean = mean self.std = std # Data path split_file = pjoin(data_root, split + '.txt') motion_dir = pjoin(data_root, 'new_joint_vecs') text_dir = pjoin(data_root, 'texts') # Data id list self.id_list = [] with cs.open(split_file, "r") as f: for line in f.readlines(): self.id_list.append(line.strip()) new_name_list = [] length_list = [] data_dict = {} for name in self.id_list: try: motion = np.load(pjoin(motion_dir, name + '.npy')) if (len(motion)) < self.min_motion_length or (len(motion) >= 200): continue data_dict[name] = {'motion': motion, 'length': len(motion), 'name': name} new_name_list.append(name) length_list.append(len(motion)) except: # Some motion may not exist in KIT dataset pass self.length_arr = np.array(length_list) self.data_dict = data_dict self.name_list = new_name_list self.nfeats = motion.shape[-1] def __len__(self): return len(self.data_dict) def __getitem__(self, item): name = self.name_list[item] data = self.data_dict[name] motion, m_length = data['motion'], data['length'] m_length = (m_length // self.unit_length) * self.unit_length idx = random.randint(0, len(motion) - m_length) motion = motion[idx:idx+m_length] "Z Normalization" motion = (motion - self.mean) / self.std return name, motion, m_length, True, True, True, True, True, True