from os.path import join as pjoin from ..common.skeleton import Skeleton import numpy as np import os from ..common.quaternion import * from ..utils.paramUtil import * import torch from tqdm import tqdm # positions (batch, joint_num, 3) def uniform_skeleton(positions, target_offset): src_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu') src_offset = src_skel.get_offsets_joints(torch.from_numpy(positions[0])) src_offset = src_offset.numpy() tgt_offset = target_offset.numpy() # print(src_offset) # print(tgt_offset) '''Calculate Scale Ratio as the ratio of legs''' src_leg_len = np.abs(src_offset[l_idx1]).max() + np.abs(src_offset[l_idx2]).max() tgt_leg_len = np.abs(tgt_offset[l_idx1]).max() + np.abs(tgt_offset[l_idx2]).max() scale_rt = tgt_leg_len / src_leg_len # print(scale_rt) src_root_pos = positions[:, 0] tgt_root_pos = src_root_pos * scale_rt '''Inverse Kinematics''' quat_params = src_skel.inverse_kinematics_np(positions, face_joint_indx) # print(quat_params.shape) '''Forward Kinematics''' src_skel.set_offset(target_offset) new_joints = src_skel.forward_kinematics_np(quat_params, tgt_root_pos) return new_joints def extract_features(positions, feet_thre, n_raw_offsets, kinematic_chain, face_joint_indx, fid_r, fid_l): global_positions = positions.copy() """ Get Foot Contacts """ def foot_detect(positions, thres): velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0]) feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 # feet_l_h = positions[:-1,fid_l,1] # feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float64) feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float64) feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 # feet_r_h = positions[:-1,fid_r,1] # feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float64) feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float64) return feet_l, feet_r # feet_l, feet_r = foot_detect(positions, feet_thre) # feet_l, feet_r = foot_detect(positions, 0.002) '''Quaternion and Cartesian representation''' r_rot = None def get_rifke(positions): '''Local pose''' positions[..., 0] -= positions[:, 0:1, 0] positions[..., 2] -= positions[:, 0:1, 2] '''All pose face Z+''' positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions) return positions def get_quaternion(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False) '''Fix Quaternion Discontinuity''' quat_params = qfix(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) quat_params[1:, 0] = r_velocity # (seq_len, joints_num, 4) return quat_params, r_velocity, velocity, r_rot def get_cont6d_params(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True) '''Quaternion to continuous 6D''' cont_6d_params = quaternion_to_cont6d_np(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) # (seq_len, joints_num, 4) return cont_6d_params, r_velocity, velocity, r_rot cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions) positions = get_rifke(positions) # trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0) # r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]]) # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') # plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r') # plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g') # plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y') # plt.xlabel('x') # plt.ylabel('z') # plt.axis('equal') # plt.show() '''Root height''' root_y = positions[:, 0, 1:2] '''Root rotation and linear velocity''' # (seq_len-1, 1) rotation velocity along y-axis # (seq_len-1, 2) linear velovity on xz plane r_velocity = np.arcsin(r_velocity[:, 2:3]) l_velocity = velocity[:, [0, 2]] # print(r_velocity.shape, l_velocity.shape, root_y.shape) root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1) '''Get Joint Rotation Representation''' # (seq_len, (joints_num-1) *6) quaternion for skeleton joints rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1) '''Get Joint Rotation Invariant Position Represention''' # (seq_len, (joints_num-1)*3) local joint position ric_data = positions[:, 1:].reshape(len(positions), -1) '''Get Joint Velocity Representation''' # (seq_len-1, joints_num*3) local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1), global_positions[1:] - global_positions[:-1]) local_vel = local_vel.reshape(len(local_vel), -1) data = root_data data = np.concatenate([data, ric_data[:-1]], axis=-1) data = np.concatenate([data, rot_data[:-1]], axis=-1) # print(dataset.shape, local_vel.shape) data = np.concatenate([data, local_vel], axis=-1) data = np.concatenate([data, feet_l, feet_r], axis=-1) return data def process_file(positions, feet_thre): # (seq_len, joints_num, 3) # '''Down Sample''' # positions = positions[::ds_num] '''Uniform Skeleton''' positions = uniform_skeleton(positions, tgt_offsets) '''Put on Floor''' floor_height = positions.min(axis=0).min(axis=0)[1] positions[:, :, 1] -= floor_height # print(floor_height) # plot_3d_motion("./positions_1.mp4", kinematic_chain, positions, 'title', fps=20) '''XZ at origin''' root_pos_init = positions[0] root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1]) positions = positions - root_pose_init_xz # '''Move the first pose to origin ''' # root_pos_init = positions[0] # positions = positions - root_pos_init[0] '''All initially face Z+''' r_hip, l_hip, sdr_r, sdr_l = face_joint_indx across1 = root_pos_init[r_hip] - root_pos_init[l_hip] across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l] across = across1 + across2 across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis] # forward (3,), rotate around y-axis forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1) # forward (3,) forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis] # print(forward_init) target = np.array([[0, 0, 1]]) root_quat_init = qbetween_np(forward_init, target) root_quat_init = np.ones(positions.shape[:-1] + (4,)) * root_quat_init positions_b = positions.copy() positions = qrot_np(root_quat_init, positions) # plot_3d_motion("./positions_2.mp4", kinematic_chain, positions, 'title', fps=20) '''New ground truth positions''' global_positions = positions.copy() # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') # plt.plot(positions[:, 0, 0], positions[:, 0, 2], marker='o', color='r') # plt.xlabel('x') # plt.ylabel('z') # plt.axis('equal') # plt.show() """ Get Foot Contacts """ def foot_detect(positions, thres): velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0]) feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 # feet_l_h = positions[:-1,fid_l,1] # feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float64) feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float64) feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 # feet_r_h = positions[:-1,fid_r,1] # feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float64) feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float64) return feet_l, feet_r # feet_l, feet_r = foot_detect(positions, feet_thre) # feet_l, feet_r = foot_detect(positions, 0.002) '''Quaternion and Cartesian representation''' r_rot = None def get_rifke(positions): '''Local pose''' positions[..., 0] -= positions[:, 0:1, 0] positions[..., 2] -= positions[:, 0:1, 2] '''All pose face Z+''' positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions) return positions def get_quaternion(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False) '''Fix Quaternion Discontinuity''' quat_params = qfix(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) quat_params[1:, 0] = r_velocity # (seq_len, joints_num, 4) return quat_params, r_velocity, velocity, r_rot def get_cont6d_params(positions): skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") # (seq_len, joints_num, 4) quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True) '''Quaternion to continuous 6D''' cont_6d_params = quaternion_to_cont6d_np(quat_params) # (seq_len, 4) r_rot = quat_params[:, 0].copy() # print(r_rot[0]) '''Root Linear Velocity''' # (seq_len - 1, 3) velocity = (positions[1:, 0] - positions[:-1, 0]).copy() # print(r_rot.shape, velocity.shape) velocity = qrot_np(r_rot[1:], velocity) '''Root Angular Velocity''' # (seq_len - 1, 4) r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) # (seq_len, joints_num, 4) return cont_6d_params, r_velocity, velocity, r_rot cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions) positions = get_rifke(positions) # trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0) # r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]]) # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') # plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r') # plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g') # plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y') # plt.xlabel('x') # plt.ylabel('z') # plt.axis('equal') # plt.show() '''Root height''' root_y = positions[:, 0, 1:2] '''Root rotation and linear velocity''' # (seq_len-1, 1) rotation velocity along y-axis # (seq_len-1, 2) linear velovity on xz plane r_velocity = np.arcsin(r_velocity[:, 2:3]) l_velocity = velocity[:, [0, 2]] # print(r_velocity.shape, l_velocity.shape, root_y.shape) root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1) '''Get Joint Rotation Representation''' # (seq_len, (joints_num-1) *6) quaternion for skeleton joints rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1) '''Get Joint Rotation Invariant Position Represention''' # (seq_len, (joints_num-1)*3) local joint position ric_data = positions[:, 1:].reshape(len(positions), -1) '''Get Joint Velocity Representation''' # (seq_len-1, joints_num*3) local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1), global_positions[1:] - global_positions[:-1]) local_vel = local_vel.reshape(len(local_vel), -1) data = root_data data = np.concatenate([data, ric_data[:-1]], axis=-1) data = np.concatenate([data, rot_data[:-1]], axis=-1) # print(dataset.shape, local_vel.shape) data = np.concatenate([data, local_vel], axis=-1) data = np.concatenate([data, feet_l, feet_r], axis=-1) return data, global_positions, positions, l_velocity # Recover global angle and positions for rotation dataset # root_rot_velocity (B, seq_len, 1) # root_linear_velocity (B, seq_len, 2) # root_y (B, seq_len, 1) # ric_data (B, seq_len, (joint_num - 1)*3) # rot_data (B, seq_len, (joint_num - 1)*6) # local_velocity (B, seq_len, joint_num*3) # foot contact (B, seq_len, 4) def recover_root_rot_pos(data): rot_vel = data[..., 0] r_rot_ang = torch.zeros_like(rot_vel).to(data.device) '''Get Y-axis rotation from rotation velocity''' r_rot_ang[..., 1:] = rot_vel[..., :-1] r_rot_ang = torch.cumsum(r_rot_ang, dim=-1) r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device) r_rot_quat[..., 0] = torch.cos(r_rot_ang) r_rot_quat[..., 2] = torch.sin(r_rot_ang) r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device) r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3] '''Add Y-axis rotation to root position''' r_pos = qrot(qinv(r_rot_quat), r_pos) r_pos = torch.cumsum(r_pos, dim=-2) r_pos[..., 1] = data[..., 3] return r_rot_quat, r_pos def recover_from_rot(data, joints_num, skeleton): r_rot_quat, r_pos = recover_root_rot_pos(data) r_rot_cont6d = quaternion_to_cont6d(r_rot_quat) start_indx = 1 + 2 + 1 + (joints_num - 1) * 3 end_indx = start_indx + (joints_num - 1) * 6 cont6d_params = data[..., start_indx:end_indx] # print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape) cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1) cont6d_params = cont6d_params.view(-1, joints_num, 6) positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos) return positions def recover_rot(data): # dataset [bs, seqlen, 263/251] HumanML/KIT joints_num = 22 if data.shape[-1] == 263 else 21 r_rot_quat, r_pos = recover_root_rot_pos(data) r_pos_pad = torch.cat([r_pos, torch.zeros_like(r_pos)], dim=-1).unsqueeze(-2) r_rot_cont6d = quaternion_to_cont6d(r_rot_quat) start_indx = 1 + 2 + 1 + (joints_num - 1) * 3 end_indx = start_indx + (joints_num - 1) * 6 cont6d_params = data[..., start_indx:end_indx] cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1) cont6d_params = cont6d_params.view(-1, joints_num, 6) cont6d_params = torch.cat([cont6d_params, r_pos_pad], dim=-2) return cont6d_params def recover_from_ric(data, joints_num): r_rot_quat, r_pos = recover_root_rot_pos(data) positions = data[..., 4:(joints_num - 1) * 3 + 4] positions = positions.view(positions.shape[:-1] + (-1, 3)) '''Add Y-axis rotation to local joints''' positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions) '''Add root XZ to joints''' positions[..., 0] += r_pos[..., 0:1] positions[..., 2] += r_pos[..., 2:3] '''Concate root and joints''' positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2) return positions ''' For Text2Motion Dataset ''' ''' if __name__ == "__main__": example_id = "000021" # Lower legs l_idx1, l_idx2 = 5, 8 # Right/Left foot fid_r, fid_l = [8, 11], [7, 10] # Face direction, r_hip, l_hip, sdr_r, sdr_l face_joint_indx = [2, 1, 17, 16] # l_hip, r_hip r_hip, l_hip = 2, 1 joints_num = 22 # ds_num = 8 data_dir = '../dataset/pose_data_raw/joints/' save_dir1 = '../dataset/pose_data_raw/new_joints/' save_dir2 = '../dataset/pose_data_raw/new_joint_vecs/' n_raw_offsets = torch.from_numpy(t2m_raw_offsets) kinematic_chain = t2m_kinematic_chain # Get offsets of target skeleton example_data = np.load(os.path.join(data_dir, example_id + '.npy')) example_data = example_data.reshape(len(example_data), -1, 3) example_data = torch.from_numpy(example_data) tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu') # (joints_num, 3) tgt_offsets = tgt_skel.get_offsets_joints(example_data[0]) # print(tgt_offsets) source_list = os.listdir(data_dir) frame_num = 0 for source_file in tqdm(source_list): source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num] try: dataset, ground_positions, positions, l_velocity = process_file(source_data, 0.002) rec_ric_data = recover_from_ric(torch.from_numpy(dataset).unsqueeze(0).float(), joints_num) np.save(pjoin(save_dir1, source_file), rec_ric_data.squeeze().numpy()) np.save(pjoin(save_dir2, source_file), dataset) frame_num += dataset.shape[0] except Exception as e: print(source_file) print(e) print('Total clips: %d, Frames: %d, Duration: %fm' % (len(source_list), frame_num, frame_num / 20 / 60)) ''' if __name__ == "__main__": example_id = "03950_gt" # Lower legs l_idx1, l_idx2 = 17, 18 # Right/Left foot fid_r, fid_l = [14, 15], [19, 20] # Face direction, r_hip, l_hip, sdr_r, sdr_l face_joint_indx = [11, 16, 5, 8] # l_hip, r_hip r_hip, l_hip = 11, 16 joints_num = 21 # ds_num = 8 data_dir = '../dataset/kit_mocap_dataset/joints/' save_dir1 = '../dataset/kit_mocap_dataset/new_joints/' save_dir2 = '../dataset/kit_mocap_dataset/new_joint_vecs/' n_raw_offsets = torch.from_numpy(kit_raw_offsets) kinematic_chain = kit_kinematic_chain '''Get offsets of target skeleton''' example_data = np.load(os.path.join(data_dir, example_id + '.npy')) example_data = example_data.reshape(len(example_data), -1, 3) example_data = torch.from_numpy(example_data) tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu') # (joints_num, 3) tgt_offsets = tgt_skel.get_offsets_joints(example_data[0]) # print(tgt_offsets) source_list = os.listdir(data_dir) frame_num = 0 '''Read source dataset''' for source_file in tqdm(source_list): source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num] try: name = ''.join(source_file[:-7].split('_')) + '.npy' data, ground_positions, positions, l_velocity = process_file(source_data, 0.05) rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num) if np.isnan(rec_ric_data.numpy()).any(): print(source_file) continue np.save(pjoin(save_dir1, name), rec_ric_data.squeeze().numpy()) np.save(pjoin(save_dir2, name), data) frame_num += data.shape[0] except Exception as e: print(source_file) print(e) print('Total clips: %d, Frames: %d, Duration: %fm' % (len(source_list), frame_num, frame_num / 12.5 / 60))