File size: 5,483 Bytes
dd9600d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import json
import argparse
from pathlib import Path
from typing import List, Dict, Set
from tqdm import tqdm
import soundfile as sf
from datasets import load_dataset
import logging
import os

def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser(description="Prepare the CapSpeech dataset")
    parser.add_argument('--hub', type=str, required=True, help='Huggingface repo')
    parser.add_argument('--save_dir', type=str, required=True, help='Directory to save the JSON files')
    parser.add_argument('--cache_dir', type=str, required=True, help='Cache directory for datasets')
    parser.add_argument('--libriR_wav_dir', type=str, required=True, help='Directories containing WAV files')
    parser.add_argument('--other_wav_dir', type=str, required=True, help='Directories containing WAV files')
    parser.add_argument('--audio_min_length', type=float, default=3.0, help='Minimum audio duration in seconds')
    parser.add_argument('--audio_max_length', type=float, default=18.0, help='Maximum audio duration in seconds')
    parser.add_argument('--splits', type=str, nargs='+',
                        default=['train', 'val'],
                        help='List of splits to process')
    parser.add_argument('--debug', action='store_true', help='Enable debug mode with limited data processing')
    return parser.parse_args()

def setup_logging() -> None:
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s [%(levelname)s] %(message)s',
        handlers=[
            logging.StreamHandler()
        ]
    )

def process_dataset_split(split, dataset_split, args) -> List[Dict]:
    """
    Process a single dataset split and extract relevant records.

    Args:
        split: The name of the split (e.g., 'train').
        dataset_split: The dataset split object.
        args: Parsed command-line arguments.

    Returns:
        A list of dictionaries containing the processed records.
    """
    logging.info(f"Processing split: {split}")
    filelist: List[Dict] = []
    total_duration: float = 0.0
    num_samples: int = len(dataset_split) if not args.debug else 500
    source_path = {
        'libritts-r': args.libriR_wav_dir,
        'voxceleb': args.other_wav_dir,
        'expresso': args.other_wav_dir,
        'ears': args.other_wav_dir,
        'vctk': args.other_wav_dir,
    }

    for idx in tqdm(range(num_samples), desc=f"Processing {split}"):
        try:
            data = dataset_split[idx]
        except IndexError:
            logging.warning(f"Index {idx} out of range for split '{split}'. Skipping.")
            continue

        audio_path: str = data.get("audio_path", "")
        duration: float = data.get("speech_duration", 0.0)
        source: str = data.get("source", "")
        audio_path = os.path.join(source_path[source], audio_path)

        if not audio_path:
            logging.warning(f"Missing audio_path at index {idx} in split '{split}'. Skipping.")
            continue

        if not os.path.exists(audio_path):
            logging.warning(f"WAV file does not exist: {audio_path}")
            continue

        if not (args.audio_min_length <= duration <= args.audio_max_length):
            continue

        record: Dict = {
            "segment_id": audio_path.split('/')[-1].split('.')[0],
            "audio_path": audio_path,
            "text": data.get('text', ''),
            "caption": data.get('caption', ''),
            "duration": duration,
            "source": source
        }

        filelist.append(record)
        total_duration += duration

    logging.info(f"Total duration for split '{split}': {total_duration / 3600:.2f} hrs.")
    logging.info(f"Total records for split '{split}': {len(filelist)}")
    return filelist


def save_json(filelist: List[Dict], output_path: Path) -> None:
    """
    Save the list of records to a JSON file.

    Args:
        filelist: List of dictionaries containing the records.
        output_path: Path to the output JSON file.
    """
    try:
        with output_path.open('w', encoding='utf-8') as json_file:
            json.dump(filelist, json_file, ensure_ascii=False, indent=4)
        logging.info(f"Saved {len(filelist)} records to '{output_path}'")
    except Exception as e:
        logging.error(f"Failed to save JSON to '{output_path}': {e}")


def main() -> None:
    args = parse_args()
    setup_logging()

    save_dir: Path = Path(args.save_dir)
    jsons_dir: Path = save_dir / 'jsons'
    jsons_dir.mkdir(parents=True, exist_ok=True)
    logging.info(f"JSON files will be saved to '{jsons_dir}'")
    logging.info("Loading dataset...")
    try:
        ds = load_dataset(args.hub)
        # ds = load_dataset(args.hub, cache_dir=args.cache_dir)
    except Exception as e:
        logging.error(f"Failed to load dataset: {e}")
        return

    splits_to_process = args.splits
    available_splits = set(ds.keys())
    selected_splits = [split for split in splits_to_process if split in available_splits]

    missing_splits = set(splits_to_process) - available_splits
    if missing_splits:
        logging.warning(f"The following splits were not found in the dataset and will be skipped: {missing_splits}")

    for split in selected_splits:
        dataset_split = ds[split]
        filelist = process_dataset_split(split, dataset_split, args)
        output_file: Path = jsons_dir / f"{split}.json"
        save_json(filelist, output_file)


if __name__ == "__main__":
    main()