Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import logging | |
import json | |
import os | |
import numpy as np | |
import torch | |
import tqdm | |
import time | |
from transformers import T5EncoderModel, AutoTokenizer | |
import glob | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Encode the data captionings using t5 model") | |
parser.add_argument('--save_dir', type=str, default=None, help="path to the manifest, phonemes, and encodec codes dirs") | |
parser.add_argument('--start', type=int, default=0, help='start index for parallel processing') | |
parser.add_argument('--end', type=int, default=10000000, help='end index for parallel processing') | |
return parser.parse_args() | |
if __name__ == "__main__": | |
formatter = ( | |
"%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s" | |
) | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
args = parse_args() | |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
caption_encoder = T5EncoderModel.from_pretrained("google/flan-t5-large").cuda().eval() | |
# get the path | |
phn_save_root = os.path.join(args.save_dir, "t5") | |
os.makedirs(phn_save_root, exist_ok=True) | |
stime = time.time() | |
logging.info(f"captioning...") | |
json_paths = glob.glob(os.path.join(args.save_dir, 'jsons', '*.json')) | |
for json_path in json_paths: | |
with open(json_path, 'r', encoding="utf-8") as json_file: | |
jsondata = json.load(json_file) | |
jsondata = jsondata[args.start:args.end] | |
for key in tqdm.tqdm(range(len(jsondata))): | |
save_fn = os.path.join(phn_save_root, jsondata[key]['segment_id']+".npz") | |
if not os.path.exists(save_fn): | |
text = jsondata[key]['caption'] | |
with torch.no_grad(): | |
batch_encoding = tokenizer(text, return_tensors="pt") | |
ori_tokens = batch_encoding["input_ids"].cuda() | |
outputs = caption_encoder(input_ids=ori_tokens).last_hidden_state | |
phn = outputs.cpu().numpy() | |
np.savez_compressed(save_fn, phn) |