OpenSound's picture
Upload 518 files
dd9600d verified
export CUDA_VISIBLE_DEVICES=0
SAVE_DIR='./pretrain_data' # to save processed data
CACHE_DIR='./cache' # to save dataset cache
MLS_WAV_DIR='' # downloaded mls wav path
LIBRITTSRMIX_WAV_DIR='' # downloaded librittsrmix wav path
GIGASPEECH_WAV_DIR='' # downloaded gigaspeech wav path
COMMONVOICE_WAV_DIR='' # downloaded commonvoice wav path
EMILIA_WAV_DIR='' # downloaded emilia wav path
CPUS=30
N_WORKERS=8
BATCH_SIZE=64
HUB='OpenSound/CapSpeech'
python preprocess_pretrain.py \
--hub ${HUB} \
--save_dir ${SAVE_DIR} \
--cache_dir ${CACHE_DIR} \
--libriRmix_wav_dir ${LIBRITTSRMIX_WAV_DIR}\
--mls_wav_dir ${MLS_WAV_DIR} \
--commonvoice_dir ${COMMONVOICE_WAV_DIR} \
--gigaspeech_dir ${GIGASPEECH_WAV_DIR} \
--emilia_dir ${EMILIA_WAV_DIR} \
--splits train_PT validation_PT \
--audio_min_length 3.0 \
--audio_max_length 18.0
python phonemize.py \
--save_dir ${SAVE_DIR} \
--num_cpus ${CPUS}
python caption.py \
--save_dir ${SAVE_DIR}
python filemaker.py \
--save_dir ${SAVE_DIR}
python vocab.py \
--save_dir ${SAVE_DIR}